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A B S T R A C T   

Particle mixing and irrigation of the seabed by benthic fauna (bioturbation) have major impacts on ecosystem 
functions such as remineralization of organic matter and sediment-water exchange. As a tribute to Prof. Gaston 
Desrosiers by the Nereis Park association, eighteen laboratories carried out a collaborative experiment to acquire 
a global snapshot of particle reworking by the polychaete Hediste diversicolor at 16 sites surrounding the Northern 
Atlantic. Organisms and soft sediments were collected during May – July at different geographical locations and, 
using a common laboratory protocol, particulate fluorescent tracers (‘luminophores’) were used to quantify 
particle transport over a 10-day period. Particle mixing was quantified using the maximum penetration depth of 
tracers (MPD), particle diffusive coefficients (Db), and non-local transport coefficients (r). Non-local coefficients 
(reflecting centimeter scale transport steps) ranged from 0.4 to 15 yr− 1, and were not correlated across sites with 
any measured biological (biomass, biovolume) or environmental parameters (temperature, grain size, organic 
matter). Maximum penetration depths (MPD) averaged ~10.7 cm (6.5–14.5 cm), and were similar to the global 
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average bioturbation depth inferred from short-lived radiochemical tracers. MPD was also not correlated with 
measures of size (individual biomass), but increased with grain size and decreased with temperature. Bio-
diffusion (Db) correlated inversely with individual biomass (size) and directly with temperature over the envi-
ronmental range (Q10 ~ 1.7; 5–21 ◦C). The transport data were comparable in magnitude to rates reported for 
localized H. diversicolor populations of similar size, and confirmed some but not all correlations between sedi-
ment reworking and biological and environmental variables found in previous studies. The results imply that 
measures of particle reworking activities of a species from a single location can be generally extrapolated to 
different populations at similar conditions.   

1. Introduction 

Macrofaunal bioturbation is recognized as a major biological process 
controlling sediment ecosystem functions such as biogeochemical 
cycling and benthic material fluxes (Rhoads, 1974; Kristensen et al., 
2012). Nereid polychaetes and specifically Hediste diversicolor, O.F. 
Müller, 1776 (formerly Nereis diversicolor) are among the species for 
which bioturbation activities are best documented (e.g., Davey and 
Watson, 1995; Kristensen, 1983a, 1983b; Riisgård et al., 1992; Kris-
tensen and Hansen, 1999; Duport et al., 2006; Godbold et al., 2011; 
Hedman et al., 2011; Lindqvist et al., 2013). Sediment reworking by 
H. diversicolor is linked to the construction and maintenance of burrow 
networks (Gerino and Stora, 1991; Davey, 1994; Hale et al., 2014; Hale 
et al., 2015) and also to its deposit-feeding activity on near-surface 
particles (Esnault et al., 1990). These activities generate both bio-
diffusive and non-local particle transport that have been previously 
modelled as hybrid “gallery-biodiffusion” (François et al., 2002). 
H. diversicolor also actively ventilates its burrow in an intermittent 
pattern with undulatory movements of its body to provide electron ac-
ceptors and remove metabolites (Riisgård and Larsen, 2005) and, when 
algal concentration is sufficient in the overlying water, to suspension- 
feed (Vedel and Riisgård, 1993). 

It has been shown that H. diversicolor is able to modify the conditions 
of the sediment environment and influence the behavior of other species 
or communities (e.g., Witte and De Wilde, 1979; Reise, 1981; Ólafsson 
and Persson, 1986; Jensen and André, 1993; Emmerson, 2000; Gillet and 
Torresani, 2003; Paramor and Hughes, 2004; Wenzhöfer and Glud, 
2004; Papaspyrou et al., 2006; Cuny et al., 2007; Pischedda et al., 2011; 
Engelsen et al., 2010; Godbold et al., 2011; Stauffert et al., 2013; Taylor 
and Cunliffe, 2015). Sediment reworking and ventilation by 
H. diversicolor may also partly control the fate of organic matter or 
pollutants (e.g.; Gilbert et al., 1994; Gilbert et al., 1997; Christensen 
et al., 2002; Banta and Andersen, 2003; Kristensen and Mikkelsen, 2003; 
Fernandes et al., 2006a; Burlinson and Lawrence, 2007; Tang and 
Kristensen, 2007; Cardoso et al., 2008; Bonnard et al., 2009; Mayor 
et al., 2009; Stomperudhaugen et al., 2009; Mouneyrac et al., 2010; 
Buffet et al., 2011; Buffet et al., 2013; Sun et al., 2018), sedimentary 
biogeochemical cycling (e.g.; Clavero et al., 1994; Gilbert et al., 1995; 
Banta et al., 1999; Ferro et al., 2003; Kristensen et al., 2011; Pischedda 
et al., 2012; Martinez-Garcia et al., 2015; Valdemarsen et al., 2018), and 
physical properties of the seabed (e.g.; Fernandes et al., 2006b; Fer-
nandes et al., 2009; Widdows et al., 2009). However, the magnitude of 
influence, like that of many species, can depend on environmental his-
tory and context (e.g. Godbold and Solan, 2013; Murray et al., 2017; 
Wohlgemuth et al., 2016; Wohlgemuth et al., 2017). 

H. diversicolor is broadly distributed in a ‘Northern Atlantic wide 
zone’, i.e. from North America to the Baltic Sea (Smith, 1977 in Röhner 
et al., 1997), and from the Gulf of St Lawrence south to Puerto Rico 
(Brunel et al., 1998). As a tribute to Prof. Gaston Desrosiers, our 
colleague from Institut des Sciences de la Mer (ISMER), Université du 
Québec à Rimouski (Québec, Canada), an internationally recognized 
expert in benthic ecology who passed away in 2006, the aim of this work 
was to acquire a regional scale perspective of sediment reworking ac-
tivity of H. diversicolor. This work also sought to examine variation with 
respect to site specific biological or commonly measured environmental 

parameters, although we acknowledge that causation cannot be directly 
and unambiguously inferred as they are confounded by location. Here 
we report on the findings of a set of experiments conducted at eighteen 
sites by research groups named here according their respective sampling 
site from Europe, North America and Oceania (Nereis Park association, 
http://www.nereispark.org; Table 1). 

2. Materials and methods 

2.1. Sampling and experimental procedure 

Sediments and polychaetes from the subfamily Nereididae were 
sampled in eighteen locations from May to July 2007 (Table 1 and 
Fig. 1). Based on a common experimental protocol, surface sediments 
(0–5 cm depth) were collected and sieved through a 1-mm mesh to 
remove macrofauna and debris, and then homogenized. H. diversicolor 

Table 1 
Code, name (code signification underlined) and location of sampling site, for the 
eighteen research groups involved in the Nereis Park joint-experiment carried 
out in Northern hemisphere Spring 2007. (*) For AS, sediments were sampled at 
the Venice Lagoon while polychaetes were provided (lab-reared) by the Uni-
versity of Modena (Italy).  

Site 
code 

Sampling site Sampling 
coordinates 

WNS Ythan estuary, West North Sea, Newburgh, 
Scotland, UK 

57◦20′05”N 
2◦00′12”W 

ENS Koenigshafen, East North Sea, Sylt, Germany 55◦02′07”N 
8◦24′27′′E 

SKA Rågårdsvik Bay, Skagerrak, Sweden 58◦12′32”N 
11◦26′47′′E 

AS Venice Lagoon, Adriatic Sea, Italy (*) 45◦24′28”N 
12◦18′55′′E 

SLR Anse à l’orignal, Bic, Saint Lawrence River, 
Rimouski, Québec, Canada 

48◦21′53”N 
68◦46′16”W 

CS Plage des Moulins Blancs, Celtic Sea, Brest, France 48◦23′47”N 
4◦25′53”W 

LIS Flax Pond, Long Island Sound, Brookhaven, NY, 
USA 

40◦57′41”N 
73◦08′25”W 

BP Pepe Inlet, Bay of Plenty, Tairua, Coromandel 
Penisula, NZ 

37◦00′12”S 
175◦50′51′′E 

TAM St John’s Ford, Tamar, Cornwall, UK 50◦21′50”N 
4◦14′08”W 

SBS Schnatermann/Breitling, South Baltic Sea, 
Germany 

54◦10′22”N 
12◦08′30′′E 

RF Herslev, Roskilde Fjord, Denmark 55◦40′42”N 
11◦59′07′′E 

LG Lochgilphead, Scotland, UK 56◦02′08”N 
5◦26′13”W 

OF Kærby Fed, Odense Fjord, Denmark 55◦27′03”N 
10◦29′38′′E 

NBS Mörkö, Stockholm Archipelago, North Baltic Sea, 
Sweden 

59◦02′34”N 
17◦41′33′′E 

AB Pointe de L’Aiguillon, Arcachon Bay, France 44◦40′00”N 
1◦07′30”W 

LRE Loire River estuary, France 47◦15′50”N 
2◦10′09”W 

ØRE Øresund, Denmark 56◦02′33”N 
12◦36′42′′E 

MED Saint-Antoine Canal, Gulf of Fos, Mediterranean 
Sea, France 

43◦22′31”N 
4◦50′17′′E  
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was used in the experiment by sixteen research groups (Table 2). All 
groups obtained adult worms from their respective sampling sites, 
except for the reared individuals used by AS (Venice Lagoon, Italy). SLR 
(Québec, Canada) used individuals of Alitta virens, while BP (Pepe Inlet, 
Tairua, New Zealand) used individuals of Perinereis vallata. Individuals 
representative in size of local populations were weighed (Table 2) and 
maintained in homogenized, local sediments with continually aerated 
water, a 12: 12 h dark: light cycle and at ambient temperature (Table 2). 

Four PVC or Plexiglas core tubes (height: 20 cm; internal diameter: 
8–10 cm) were filled with homogenized sediments (15 cm deep sedi-
ment column) and incubated in seawater for 7 days at ambient condi-
tions (Table 2). At each location, treatments included the addition of 
four worms (509–796 ind. m− 2) to each of three replicate cores, and a 
control without macrofauna. Worms were allowed to establish burrows 
for seven days before the addition of particle tracers (2 g core− 1, fluo-
rescently dyed sediment particles, ‘luminophores’; 63–125 μm; Partrac 
Ltd., Glasgow, UK) that were suspended in seawater and distributed 
evenly across the sediment-water interface to achieve a visible layer of 
≤1 mm thick. After 10 days, the overlying seawater was removed and 
the experimental cores were sectioned into 0.5-cm thick layers from the 
surface down to 2 cm depth, and 1-cm thick layers down to 15 cm. The 
sediment from each layer was freeze-dried, homogenized and lumino-
phores were enumerated from images (Olympus C-2500 L digital cam-
era, 1712 × 1368 pixel resolution) taken under UV-light (wavelength 
peak, 365 nm) using standard image analysis routines (Image-Pro Plus). 
Organic matter (OM) content (LOI; 400 ◦C overnight; Schumacher, 
2002) and sediment grain size (Malvern Mastersizer 2000) were quan-
tified from a subsample of each sieved and homogenized sediment. 

2.2. Quantification of sediment reworking 

Based on vertical tracer distribution depth profiles, we used the 

gallery-diffusor model developed for gallery-constructing organisms 
such as H. diversicolor (François et al., 2002; Duport et al., 2006) to 
quantify the intensity of sediment reworking over the 10-day experi-
mental period. This model allows a description of both the diffusion-like 
mixing (biodiffusion) of particles in the uppermost region of intense 
burrowing activity and non-local transport occurring across the full 
extent of the sediment profile (full description of the model in Gilbert 
et al., 2007). The biodiffusion coefficient, Db, and the non-local coeffi-
cient, r, were obtained for each experimental luminophore profile, and 
the goodness of fit between the observed distribution of luminophores 
and the modelled profile was achieved using the least square method 
(Fig. 2). In addition, the maximum penetration depth of luminophores 
(MPD) was used as a proxy to estimate sediment reworking depth 
(Lindqvist et al., 2013). 

2.3. Data 

As H. diversicolor were predominant in our study (16 of 18 sites), we 
present the complete dataset that includes other species, but we restrict 
the comparative discussion to H. diversicolor. 

2.4. Scoring approach 

We standardized the two mixing coefficients (Db and r) using the 
“0–1 scaling” procedure (Sneath and Sokal, 1973; Maire et al., 2013) to 
generate comparable sediment reworking scores allowing ranking but 
not absolute comparison of the results obtained by each laboratory. 
Hence, each coefficient was transformed using Eq. (1): 

Xstand =
X − Xmin

Xmax − Xmin
(1)  

where Xstand is the coefficient X (X: Db or r; mean value for each 

Fig. 1. Location of sampling sites, for the eighteen research groups involved in the Nereis Park joint-experiment carried out in the Northern hemisphere spring 2007. 
Site codes are indicated. For site coordinates, see Table 1. 
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laboratory) after standardization, and Xmin and Xmax are the minimum 
and maximum mean values of the coefficient X within the whole set of 
experiments, respectively. The value of each standardized coefficient 
consequently ranged from 0 (lowest mixing) to 1 (highest mixing). Then, 
the two standardized coefficients (Db-stand and rstand) were summed to 
produce a unique sediment reworking score combining both elements of 
reworking for each experiment Eq. (2). This dimensionless sediment 
reworking score ranged from 0 to 2. 

Sediment reworking score = Db− stand + rstand (2)  

2.5. Statistical analyses 

As the observations in our study are confounded by location specific 

differences in environmental conditions, it is inappropriate to perform 
standard factorial regression analysis. Whilst we recognize that care 
must be taken in inferring causality from correlations, we correlated 
mixing coefficients (Db and r), MPD and our experimental parameters 
(biomass, biovolume, temperature, grain size distribution, organic 
matter content) using non-parametric correlation analyses (Spearman 
correlation). 

3. Results 

In the sixteen experiments with H. diversicolor, the abundances in 
core microcosms were restricted to 509–629 m− 2, with total biomasses 
varying across the different sampling sites between 0.5 and 3.15 g wet 

Table 2 
Polychaete species, experimental biological and environmental parameters for the eighteen research groups involved in this study. Wet biomass and biovolume data 
are mean ± SD for triplicate cores, excepted for TAM and AB (n = 4) and SKA (n = 6). A. virens: Alitta virens, H. diversicolor: Hediste diversicolor, P. vallata: Perinereis 
vallata. For the location of each site, refer to Fig. 1 and Table 1.  

Site code Species Density Wet biomass Wet biovolume Temp. Grain-size (μm) OM 

(ind. m− 2) (g; per core) (cm3; per core) (◦C) (median/mode) (%) 

WNS H. diversicolor 509 0.87 ± 0.05 1.05 ± 0.10 13 46/58 6,00 
ENS H. diversicolor 629 1.62 ± 0.22 1.09 ± 0.07 18 357/340 0.38 
SKA H. diversicolor 530 0.50 ± 0.03 1.18 ± 0.20 15 61/122 1.77 
AS H. diversicolor 576 0.80 ± 0.03 3.17 ± 0.25 20 26/70 0.55 
SLR A. virens 509 13.5 ± 0.59 89.71 ± 3.46 5 296/282 1.95 
CS H. diversicolor 615 3.15 ± 0.12 2.68 ± 0.22 14 391/494 2.45 
LIS H. diversicolor 564 1.80 ± 0.00 3.30 ± 0.00 15 32/76 3.79 
BP P. vallata 509 1.89 ± 0.01 2.77 ± 0.06 20 154/161 2.47 
TAM H. diversicolor 509 3.07 ± 0.06 7.07 ± 0.77 13 32/63 10.24 
SBS H. diversicolor 509 1.75 ± 0.03 2.60 ± 0.28 14 140/161 0.28 
RF H. diversicolor 509 1.37 ± 0.19 2.53 ± 0.34 16 246/310 0.85 
LG H. diversicolor 509 1.49 ± 0.08 2.31 ± 0.20 12 101/134 3.34 
OF H. diversicolor 796 1.14 ± 0.09 3.78 ± 0.46 16 246/234 0.95 
NBS H. diversicolor 796 2.40 ± 0.07 3.39 ± 0.05 10 224/257 0.10 
AB H. diversicolor 576 1.65 ± 0.19 2.90 ± 0.52 13 63/70 2.25 
LRE H. diversicolor 509 1.49 ± 0.17 2.76 ± 0.63 17 35/134 5.91 
ØRE H. diversicolor 553 0.85 ± 0.05 3.56 ± 0.24 15 325/340 0.58 
MED H. diversicolor 615 2.07 ± 0.03 4.64 ± 0.07 21 35/111 3.19  
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Fig. 2. Two examples of experimental luminophore profiles (diamonds) and corresponding modelled profiles (dotted lines) obtained with the gallery-diffusor model 
(François et al., 2002; Duport et al., 2006). They either produced a relatively good (6.3% error; PLM_2; left) or poor (14.8% error; RUC_3; right) fit between 
experimental and modelled data. For the location of each site, refer to Fig. 1 and Table 1. 
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weight (Table 2). Thus, sizes of H. diversicolor measured as biomass (wet 
weight) per individual ranged between 0.13 and 0.79 g wet wt ind− 1, 
averaging 0.41 ± 0.19 (median 0.39 g). Median grain size and organic 
matter contents at the multiple locations were 26–391 μm and 0.1–10.2 
wt% respectively, with mean 2.6 ± 2.6 wt% (median 2.1 wt%). Most of 
the variation in organic matter content characterized sediment sites with 
a median grain size <50 μm (0.5–10.1% wt). For median grain sizes 
above 50 μm, organic matter otherwise averaged 1.4 ± 1.1 wt% (median 
1.4 wt%). There were no discernable relationships (correlations) across 
the sampling locations between the biomass of individuals (~size) and 
either average/median grain size or organic matter content of 
sediments. 

The sixteen experiments with H. diversicolor revealed that the 
maximum penetration depth (MPD) of luminophores ranged from 6.5 ±

1.0 (AS, Italy) and 6.5 ± 2.2 (RF, Denmark) to 14.5 ± 0.0 cm (ENS, 
Germany) (Fig. 3A). Overall, biodiffusion (Db) and non-local (r) mixing 
coefficients ranged from 0.2 to 1.89 cm2 y− 1 and from 0.4 to 15.0 y− 1, 
respectively. Both the mean Db and r coefficients differed among loca-
tions. Mean coefficients varied from the lowest: Db = 0.8 ± 0.1 cm2 y− 1, 
r = 2.4 ± 0.4 y− 1, LG, Scotland; to the highest: Db = 1.7 ± 0.1 cm2 y− 1, 
AS, Italy, and r = 11.0 ± 3.3 y− 1, WNS, Scotland (Fig. 3B and C). 

Sediment reworking scores that integrated biodiffusion (Db) and non- 
local (r) particle transport allowed ranking of the sediment reworking 
intensity by H. diversicolor populations between the different locations 
(Fig. 4). Scores ranged from 0 for LG, Scotland (i.e., the lowest values of 
both Db and r for the whole study) to 1.42 for AB (France) (Fig. 4). 
Correlations between sediment mixing proxies (MPD, Db and r) and the 
registered experimental, biological and environmental parameters 
(Table 2) indicated that MPD is positively correlated with an increase in 
median grain size (Spearman correlation test; ρ = 0.56; p = 0.000017) 
and inversely with temperature (ρ = − 0.33; p = 0.018). Db is positively 
correlated with temperature (ρ = 0.37; p = 0.008) but negatively 
correlated with an increase in biomass (size) (ρ = − 0.29; p = 0.042) 
(Fig. 5). We found no significant correlation between MPD or Db and 
density or OM content (ρ > 0.2; p > 0.05). r was not significantly 
correlated with any measured environmental parameters (ρ > 0.2; p >
0.05). 

4. Discussion 

The abundances of H. diversicolor utilized in experiments were fixed 
at 4 individuals per core, equivalent to 509–620 ind. m− 2. In contrast, 
total biomass and biovolume differed substantially across locations; 
averaging 0.41 ± 0.39 g wet weight ind− 1 and 0.75 ± 0.37 mL ind− 1 

respectively (Table 2). Assuming a conversion factor for H. diversicolor 
ash free dry weight to wet weight of ~0.15 (AFDW/WW) (Rumohr et al., 
1987; Ricciardi and Bourget, 1998), and an average allometric rela-
tionship between individual length, L, and AFDW of AFDW = 0.32 L2.3 

as measured over 3 years in Dutch Wadden Sea tidal flats by Esselink and 
Zwarts (1989), the characteristic lengths of H. diversicolor in experi-
ments averaged ~10 cm and ranged roughly from 6 to 14 cm. Widths of 
individuals, and thus burrow diameters, are also directly related to the 
length of H. diversicolor according to L = 1.67(width)1.47 (Esselink and 
Zwarts, 1989; White, 2005). Based on previous studies with 
H. diversicolor and other infauna, these size scales (biomass, length, 
width), along with species specific behavior and local environmental 
conditions, are expected to be closely related to the biogenic transport 
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activities represented by Db, r, and MPD (e.g., Cammen, 1980; Kudenov, 
1982; Esselink and Zwarts, 1989; Duport et al., 2006; Wohlgemuth et al., 
2017). 

4.1. Depth scaling of particle reworking: MPD 

Due to the defined network of burrow galleries constructed by 
H. diversicolor (Gerino and Stora, 1991; Davey, 1994; Hale et al., 2014; 
Hale et al., 2015), the maximum penetration depth of luminophores 
(MPD) may be considered a surrogate for maximum burrow and mixing 
depths. Our estimated mean H. diversicolor burrow depth of 10.7 ± 2.6 
cm (mean ± SD) based on average MPD is similar to but slightly shal-
lower than previously reported typical depth ranges (1–29 cm; mean ~ 
12 cm for a size class of L = 10 cm; Esselink and Zwarts, 1989). It is also 
similar to the ~10 cm global average mixing depth estimated from 
short-lived radiochemical tracer distributions (e.g., 234Th, 210Pb) in 
bioturbated deposits (Boudreau, 1998; Teal et al., 2008). 

Although burrowing depth can directly reflect size of individuals up 

to an asymptotic depth range, no obvious correlation between estimates 
of size (biomass ind− 1) and MPD is evident in the pooled data of the 
present study. Avoiding predation is one factor determining burrowing 
depth, and a depth of ~10 cm provides at least a partial refuge from a 
range of fish, crabs, and birds. However, some birds such as curlews and 
bar-tailed godwit can probe at least to ~16 cm, consistent with bur-
rowing depth being an optimized balance of multiple factors such as 
food acquisition, environmental conditions, and predation rather than 
any single factor (Esselink and Zwarts, 1989). 

With respect to environmental conditions, burrowing depths of 
H. diversicolor are known to be closely associated with and to vary 
inversely with temperature in European coastal waters. Burrowing 
depths are usually <40 cm, but can extend to 50–60 cm during cold 
winters (e.g. Muus, 1967; Beukema, 1979), perhaps as a way for the 
worms to escape from freezing surface temperatures. An overall inverse 
correlation between MPD of luminophores and sampling site tempera-
ture is also evident in our grouped, between site data (Fig. 6). The slope 
of the regression for these data, ~0.4 cm/ C, is quite similar to the ~0.6 
cm/ C dependence reported for H. diversicolor populations of the Dutch 
Wadden Sea (Esselink and Zwarts, 1989). 

H. diversicolor burrowing depths can also respond to sediment 
granulometry, at least for localized populations, with deeper burrows 
found in sandy than muddy deposits (Esselink and Zwarts, 1989). The 
positive, albeit weak, correlation between MPD and grain size in our 
pooled data (Fig. 5A) reflects variation in burrow depth, indicating that 
burrow construction can depend more generally (globally) on sediment 
mass properties. However, there is some evidence that fine and medium 
sands are more conducive for deep burrowing by polychaetes, including 
H. diversicolor, than smaller grain sizes (Davey, 1994; François et al., 
2002; Rees et al., 2005; Hale et al., 2015). Regardless of the underlying 
factors, the variation in reworking depth among locations confirms the 
ability of this species to occupy a wide range of sediment types (Alex-
ander et al., 1993). 

4.2. Transport rate measures: biodiffusion and nonlocal exchange 

The analysis of particle transport by H. diversicolor was based on 
biodiffusion and non-local mixing processes as described by the gallery- 
diffusor model (François et al., 2002; Duport et al., 2006). The magni-
tudes obtained for both model reworking modes were within the range 
typically found for H. diversicolor populations at single locations at 
similar densities (François et al., 2002; Duport et al., 2006; Fernandes 
et al., 2006a); however, higher biodiffusive mixing values have occa-
sionally been observed (i.e., 4–5 cm2 y− 1; François et al., 2002; Mer-
millod-Blondin et al., 2004; Solan et al., 2008). Surprisingly, Nogaro 
et al. (2008) did not observe any diffusion-like activity, rather only non- 
local transport, in their experiment with H. diversicolor at low densities 
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(i.e., down to 260 ind. m− 2). Part of these differences may reflect vari-
ations in dominant feeding mode as a function of experimental condi-
tions (e.g., abundance; water column suspended matter, Biles et al., 
2003). 

A general positive correlation between Db and r was, however, 
observed in the present study (Fig. 7), suggesting that these measures are 
not entirely independent for H. diversicolor and, perhaps, other gallery- 
diffusors. One explanation for coherence of the two measures is func-
tional and based on burrow architecture, whilst another is computa-
tional and reflects fitting an imperfect transport model to tracer profiles. 
During our experiment (10 days), H. diversicolor was able to build 
complex galleries with U – or Y-shaped burrows (see Davey, 1994; Hale 
et al., 2015) which increased tracer mixing in the surface zone (Db), 
including cementation of tracer into multiple, bifurcating burrow walls, 
but also promoted the passive infilling of underlying burrow sections 
and transfer of particles to depth (r). Computationally, the rapid loss of 
particles from the surface region where the tracer is initially emplaced, 
decreases the measured tracer concentration gradient near the sediment 
– water interface and may enhance the calculated Db. The simultaneous 
transfer of particles to distal burrow locations at depth requires 
increased r. The exact relationship between these two measures is likely 
not strict and requires additional investigation. There is sufficient vari-
ability in the relationship between Db and r that correlations of each with 
other variables can differ. The sediment reworking score (2) in-
corporates both transport modes in a relative estimate of overall 
activity. 

The positive correlation between Db and temperature (Fig. 5B) agrees 
well with the previous results for various reworking species as assessed 
by different field, experimental (e.g., Bender and Davis, 1984; White 
et al., 1987; Hollertz and Duchêne, 2001; Maire et al., 2007; Valde-
marsen et al., 2011; Bernard, 2013), and modelling approaches (Shull, 
2001), although the temperature range within our study did not incor-
porate possible seasonal extremes (Ouellette et al., 2004). Indeed, the 
impact of temperature on sediment mixing may depend on the range of 
temperature investigated if temperatures deviate from optimal physio-
logical conditions for a species. For example, Przeslawski et al. (2009) 
demonstrated a positive temperature effect on Capitella sp.1 burrowing 
between 13 ◦C and 21 ◦C, but above this range no further increase was 
observed, presumably due to physiological stress. Similarly, Ouellette 
et al. (2004) observed for the polychaete Alitta virens that the bio-
diffusion coefficient increased with temperature up to ~13 ◦C, after 
which the values declined with increasing temperature. The reduction in 
biodiffusive mixing by A. virens at higher temperature was attributed to 
a reduced food searching and surface particle collection activity and 

enhanced ventilation activity demanded by respiratory requirements. 
The intensity of food searching by H. diversicolor is known to be tem-
perature dependent, for example, in coastal Brittany, its searching ac-
tivity ceased below 8 ◦C, increased relatively rapidly between 13 and 
18 ◦C, and continued to increase at a slower rate at least up to 23 ◦C 
(Lambert et al., 1992). Such seasonal variation in species responses were 
explicitly factored out of the present study as our objective was to 
determine the variation between populations spatially, rather than 
within populations at single locations (Wohlgemuth et al., 2017). The 
mean temperature of locations in the present study of H. diversicolor was 
15 ◦C (median 15 ◦C), with a range of 10–21 ◦C, and thus within the mid- 
to upper range experienced across the seasonal cycle at each sampling 
site. The regression slopes between Db and T or Ln(Db) and 1/T are 
consistent with a temperature dependence model Q10 of ~1.7 or an 
Arrhenius apparent activation energy of ~39 kJ mol− 1 (Fig. 8). The 
variation of Db with temperature observed across environments is 
therefore quite similar to that observed for multiple activities with 
populations in manipulative experiments or in situ seasonally at single 
sites (e.g., 29 kJ mol− 1 respiration dependence: (Kristensen et al., 1992); 
Q10 ~ 1.8 filtration dependence; Vedel et al., 1994). 

We found a negative correlation between Db and H. diversicolor 
biomass, which in the present study is equivalent to the size of in-
dividuals (Fig. 5C). Inverse dependence of reworking activity with size 
of individuals (biomass ind− 1) has been found in single populations of 
H. diversicolor (as Db; Duport et al., 2006), as ingestion rates in other 
species of polychaetes (e.g. Kudenov, 1982), and sediment ingestion 
rates by deposit feeders generally (e.g., Cammen, 1980). The exact 
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relationships between ingestion (~reworking) rate or Db and the size of 
individuals can be confounded by organic matter availability (Hargrave, 
1972; Cammen, 1980), and also opportunistic changes in feeding mode; 
for example, increased filter feeding relative to surface deposit feeding 
in the case of H. diversicolor (Vedel and Riisgård, 1993; Vedel et al., 
1994). We did not find any correlation between Db and total sediment 
organic matter in our data, perhaps reflecting a dominant mode of filter 
feeding during the experimental period, or possible inaccuracies in the 
estimation of available organic matter content. For example, at smaller 
grain sizes dominated by clay minerals, mineral-bound water can 
contribute to the weight loss at 400 ◦C, resulting in mineral - dependent 
overestimates of organic matter per se (e.g. Dean, 1974; Sun et al., 
2009). In addition, total measures of organic matter may or may not 
relate closely to reactivity or quality of food source. 

With respect to total benthic biomass, theoretical (Che and Dorgan, 
2010) and empirical studies have generally demonstrated a positive 
relationship between sediment reworking and benthic biomass (e.g., 
Reible et al., 1996; Rice et al., 1986; Reible and Mohanty, 2002; Queiros 
et al., 2013). However, these investigations were performed using in-
dividuals of similar sizes or, in the case of models, an equivalent 
assumption, and the results may reflect changes in abundance in addi-
tion to total biomass. Here, our experimental design factored out the 
effects of abundance, allowing us to conclude that variation in bio-
diffusion mixing is attributable to body size, although we are unable to 
distinguish other confounding effects. This dependence of bioturbation 
rates on size may imply, in contrast to what was recently suggested in 
the Baltic Sea (Norkko et al., 2013), that individuals of small body size of 
certain infaunal species (e.g. H. diversicolor) are more important than 
individuals of large body size for maintaining sediment reworking and 
related organic matter mixing processes. 

Correlative evidence from sediment reworking descriptors applied 
here suggests that deep burrowers may rework less intensively (in a 
biodiffusive manner) and/or that the influence of any particle reworking 
is spread over a wider depth range (Fig. 9; ρ = − 0.469; p = 0.049). 
Interestingly, the expected positive correlation between r and MPD was 
not observed (ρ = − 0.322, p = 0.192), which may suggest that bio-
diffusion is sufficient to describe reworking and that non-local transport 
is somehow minimized under the experimental conditions. The mech-
anism leading to non-local transport could be less dependent on active 
particle movement and, instead, predominantly reflect the passive 
relocation of particles that occurs because of the existence of burrows 
into which particles can fall/sink (Powilleit et al., 1994). Our use of 
quiescent incubation conditions without sediment resuspension and 
lateral transport by currents, likely minimized infilling events of bur-
rows and thus the role of non-local transport. Irrespective of the 
mechanism, it is noteworthy that Db correlated with most experimental 
and environmental parameters (see below) and that the non-local mix-
ing parameter did not relate strongly to environmental parameters. 

5. Conclusions 

We have investigated patterns of activity for a functionally important 
species across a number of environmental settings and at a spatial scale 
that ordinarily could not be achieved within a single study. Whilst our 
approach could not distinguish specific local biological and environ-
mental parameters that may influence faunal activity (e.g. Emmerson 
et al., 2001; McKie et al., 2008; Wohlgemuth et al., 2017), both the 
magnitudes of the transport activities observed across sampling loca-
tions and the correlations of those magnitudes with variables such as 
individual size and temperature, were consistent with findings from 
localized studies. These results imply that measures of particle mixing 
activities of a species from single locations and their relationships to 
local biological and environmental properties can be more generally 
extrapolated to different populations at similar conditions. Such ex-
trapolations are often made implicitly, for example in reviews of bio-
turbation, but have not been explicitly tested until now. Our study also 

confirms a great need for research on the role of environmental context, 
body size and life stage, and physiological condition in determining 
species contributions to ecosystem properties. 
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Sciences and Engineering Research Council of Canada - NSERC (P. 
Archambault and R. Belley), by the Danish Council for Independent 
Research (E. Kristensen: contract no. 12-127012 and G. Banta: contract 
no. 272-08-0577), by the Shelf Sea Biogeochemistry programme (SSB 
WP2, grant NE/K001906/1, 2011-2017), jointly funded by the Natural 
Environment Research Council (NERC) and the Department for Envi-
ronment, Food and Rural Affairs (Defra) for M. Solan and J.A. Godbold 
and by VR (Swedish research council; funding 621-2001-3670) for S.P. 
Eriksson. Nereis Park Conferences (http://nereispark.org/) promoted 
exchanges and sustained the collaborative effort. Nereis Park contribu-
tion number 40. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

0

0,5

1

1,5

2

6 7 8 9 10 11 12 13 14 15

D
b

(c
m

2 .y
-1

)

MPD (cm)

1.5

0.5

Fig. 9. Biodiffusion-like coefficient Db vs luminophore maximal depth MPD for 
the sixteen Hediste diversicolor laboratory experiments involved in the Nereis 
Park joint-experiment carried out in the Northern hemisphere spring 2007. 

F. Gilbert et al.                                                                                                                                                                                                                                  

http://nereispark.org/


Journal of Experimental Marine Biology and Ecology 541 (2021) 151588

9

References 

Alexander, R.R., Stanton Jr., R.J., Dodd, J.R., 1993. Influence of sediment grain size on 
the burrowing of bivalves: correlation with distribution and stratigraphic persistence 
of selected neogene clams. Palaios 8, 289–303. https://doi.org/10.2307/3515151. 

Banta, G.T., Andersen, O., 2003. Bioturbation and the fate of sediment pollutants: 
experimental case studies of selected infauna species. Vie Milieu 53, 233–248. 

Banta, G.T., Holmer, M., Jensen, M.H., Kristensen, E., 1999. Effects of two polychaete 
worms, Nereis diversicolor and Arenicola marina, on aerobic and anaerobic 
decomposition in a sandy marine sediment. Aquat. Microb. Ecol. 19, 189–204. 
https://doi.org/10.3354/ame019189ER. 

Bender, K., Davis, W.R., 1984. The effect of feeding by Yoldia limatula on bioturbation. 
Ophelia 23, 91–100. https://doi.org/10.1080/00785236.1984.10426606. 

Bernard, G., 2013. Mesures expérimentales et modélisation du remaniement 
sédimentaire dans le bassin d’Arcachon. Thèse de Doctorat en Biogéochimie et 
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Engelsen, A., Sundbäck, K., Hulth, S., 2010. Links between bottom-water anoxia, the 
polychaete Nereis diversicolor, and the growth of green-algal mats. Estuar. Coast. 33, 
1365–1376. https://doi.org/10.1007/s12237-010-9296-z. 

Esnault, G., Retière, C., Lambert, R., 1990. Food resource partitioning in a population of 
Nereis diversicolor (Annelida, Polychaeta) under natural experimental conditions. In: 
Barnes, M., Gibson, R.N. (Eds.), Trophic Relationship in Marine Environment, 
Proceedings of the 24th European Marine Biology Symposium. Aberdeen University 
Press, Oban, Aberdeen, pp. 453–467. 

Esselink, P., Zwarts, L., 1989. Seasonal trend in burrow depth and tidal variation in 
feeding activity of Nereis diversicolor. Mar. Ecol. Progr. Ser. 56, 243–254. 

Fernandes, S., Meysman, F., Sobral, P., 2006a. The influence on Cu contamination on 
Nereis diversicolor bioturbation. Mar. Chem. 102, 148–158. https://doi.org/10.1016/ 
j.marchem.2005.12.002. 

Fernandes, S., Sobral, P., Costa, M.H., 2006b. Nereis diversicolor effect on the stability of 
cohesive intertidal sediments. Aquat. Ecol. 40, 567–579. https://doi.org/10.1007/ 
s10452-005-8000-z. 

Fernandes, S., Sobral, P., Alcantara, F., 2009. Nereis diversicolor and copper 
contamination effect on the erosion of cohesive sediments: a flume experiment. 
Estuar. Coast. Mar. Sci. 82, 443–451. https://doi.org/10.1016/j.ecss.2009.02.007. 

Ferro, I., Van Nugteren, P., Middelburg, J.J., Herman, P.M.J., Heip, C.H.R., 2003. Effect 
of macrofauna, oxygen exchange and particle reworking on iron and manganese 
sediment biogeochemistry: a laboratory experiment. Vie Milieu 53, 211–220. 

François, F., Gerino, M., Stora, G., Durbec, J.P., Poggiale, J.C., 2002. Functional 
approach to sediment reworking by gallery-forming macrobenthic organisms: 
modeling and application with the polychaete Nereis diversicolor. Mar. Ecol. Progr. 
Ser. 229, 127–136. https://doi.org/10.3354/meps229127. 

Gerino, M., Stora, G., 1991. Analyse quantitative in vitro de la bioturbation induite par la 
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