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Abstract
Continental margins are disproportionally important for global primary production, 
fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has 
been an ongoing summertime decline of key biota—large diatoms, dinoflagellates and 
copepods—that traditionally fuel higher tropic levels such as fish, sea birds and ma-
rine mammals. Here, we combine multiple time series with in situ process studies 
to link these declines to summer nutrient stress and increasing proportions of pico-
phytoplankton that can comprise up to 90% of the combined pico- and nanophyto-
plankton biomass in coastal areas. Among the pico-fraction, it is the cyanobacterium 
Synechococcus that flourishes when iron and nitrogen resupply to surface waters are 
diminished. Our field data show how traits beyond small size give Synechococcus a 
competitive edge over pico- and nanoeukaryotes. Key is their ability to grow at low 
irradiances near the nutricline, which is aided by their superior light-harvesting sys-
tem and high affinity to iron. However, minute size and lack of essential biomolecules 
(e.g. omega-3 polyunsaturated fatty acids and sterols) render Synechococcus poor 
primary producers to sustain shelf sea food webs efficiently. The combination of ear-
lier spring blooms and lower summer food quantity and quality creates an increas-
ing period of suboptimal feeding conditions for zooplankton at a time of year when 
their metabolic demand is highest. We suggest that this nutrition-related mismatch 
has contributed to the widespread, ~50% decline in summer copepod abundance we 
observe over the last 60 years. With Synechococcus clades being prominent from the 
tropics to the Arctic and their abundances increasing worldwide, our study informs 
projections of future food web dynamics in coastal and shelf areas where droughts 
and stratification lead to increasing nutrient starvation of surface waters.
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1  | INTRODUC TION

The global importance of continental margins arises from sustained 
nutrient supply via river discharge, dust deposition and exchange 
with shallow sediments. The high nutrient availability favours the 
‘classical pelagic food chain’ with large primary producers, intensive 
phytoplankton blooms, abundant mesozooplankton (e.g. copepods) 
and efficient carbon transfer to higher trophic levels such as fish, sea-
birds and marine mammals (Kiørboe, 2008). About 80% of the world's 
wild-captured seafood derives from coastal and shelf seas (Watson, 
Green, Tracey, Farmery, & Pitcher, 2016) and marine lipids and pro-
teins are in high demand for uses in human consumption, aquaculture, 
agriculture and health (Chassot et al., 2010; Greenberg, 2018).

However, there are indications that with climate change, the 
productivity of shelf areas is declining. The well-studied North Sea 
(Northeast Atlantic) represents a prime example. Here, reductions 
in euphausiid and copepod abundance and copepod size have been 
recorded since the 1980s, with negative implications for fish stock 
recruitment (Beaugrand, Brander, Lindley, Souissi, & Reid, 2003; 
Capuzzo et al., 2017).

Two mechanisms have been proposed for these changes in zoo-
plankton abundance. On the one hand are direct effects of rising 
temperature (Beaugrand, Reid, Ibanez, Lindley, & Edwards, 2002) 
and on the other hand are indirect effects of warming and de- 
eutrophication that act via the overall food availability (Capuzzo 
et al., 2017). As a direct response to rising temperatures, many ter-
restrial and marine species shift their biogeographical range towards 
the poles (Parmesan & Yohe, 2003). North Atlantic warm-water co-
pepod species have moved polewards by up to 260 km per decade 
between 1958 and 1999, and replaced cool-water copepods in the 
North Sea (Beaugrand et al., 2002). As the warm-water copepod as-
semblages have typically lower biomass and contain smaller species, 
changes in the food web of the North Sea have been linked to these 
shifts in species distribution (Beaugrand et al., 2003).

In addition to direct physiological effects, rising temperatures can 
also have indirect effects on food web relationships. Larger heat ab-
sorption of the ocean strengthens surface stratification, which hinders 
nutrient exchange with deeper water and can lead to nutrient limita-
tion of phytoplankton and decreasing net primary production (Bopp 
et al., 2013). For the North Sea, such a decline in primary production 
over the last 25 years has been linked to reductions in zooplank-
ton abundance and fish stock recruitment (Capuzzo et al., 2017). A 
co-occurring shift in the spring bloom phenology, with an earlier for-
mation and termination of the bloom (Desmit et al., 2020; Friedland 
et al., 2018), is in line with an earlier annual start of water column strat-
ification due to climate change (Holt, Wakelin, Lowe, & Tinker, 2010).

However, nutrient limitation affects not only net primary 
production but also the phytoplankton community structure. 
A key prognosis of climate warming effects, the shift towards 
smaller primary producers, is backed up by geological records 
(Finkel et al., 2007), modelling approaches (Dutkiewicz, Scott, & 
Follows, 2013), in situ monitoring (Agirbas et al., 2015) and satel-
lite observations (Brewin et al., 2012). Advantages of decreased 

cell size are a thinning of the cell boundary layer and increase in 
nutrient diffusion per unit of cell volume (Raven, 1998), which rap-
idly decreases the nutrient concentration required for saturated 
growth rates (Chrisholm, 1992). Thus, growth of picophytoplank-
ton is saturated at ambient nitrate concentrations of >0.2 µM, 
while maximum growth rates of diatoms require 0.7–1.0 µM ni-
trate (Agawin, Duarte, & Agustí, 2000). In stratified shelf seas of 
the North East Atlantic, nitrate concentrations <0.2 µM and iron 
concentrations <0.2 nM are not exceptional (Birchill et al., 2017, 
2019), indicating that species’ efficient nutrient uptake and/or 
storage will be key. However, picophytoplankton is too small to 
be grazed by copepods (Kiørboe, 2008) and non-diatom phyla 
often lack essential biomolecules such as omega-3 polyunsatu-
rated fatty acids and sterols (Jónasdóttir, 2019; Ruess & Müller-
Navarra, 2019). Therefore, the efficiency and quality of shelf sea 
food webs in a warming climate will depend on direct tempera-
ture effects (Beaugrand et al., 2003), on total primary production 
(Capuzzo et al., 2017) and also on the size and taxonomic compo-
sition of the dominant primary producers (Schmidt, Kähler, & von 
Bodungen, 1998).

To understand how climate change may impact the community 
structure at the base of the food web in shelf seas, we approached 
the problem at two scales. Large temporal and spatial resolution, 
as provided by satellite earth observations and the Continuous 
Plankton Recorder (CPR) survey, allowed us to identify (a) differ-
ences between longer term (60 years) and shorter term (20 year) 
changes, (b) the spatial extent of changes and (c) the months that 
are most affected. At the smaller scale, we use intensive field obser-
vations of the phytoplankton community along a coast–shelf–shelf 
break gradient of nutrient supply as a ‘natural experiment’ to reveal 
the mechanisms that drive the success of the various primary pro-
ducers. By linking the two scales, we provide a conceptual model of 
why the classical food web is increasingly under threat in temperate 
coastal and shelf areas.

2  | MATERIAL S AND METHODS

2.1 | Continuous Plankton Recorder survey

The CPR survey has operated in the North Atlantic since 1931 and is 
currently managed by the Marine Biological Association (Plymouth). 
The collection and analysis of CPR samples have followed a con-
sistent methodological approach since 1958, with details given in 
Richardson et al. (2006). In brief, the CPR collects samples using a 
high-speed plankton recorder that is towed behind ‘ships of oppor-
tunity’ through the surface layer of the ocean (~10 m depth). Water 
passes through the recorder, and plankton are filtered by a slow 
moving silk layer (mesh size 270 µm). A second layer of silk covers 
the first and both are reeled into a tank containing 4% formaldehyde, 
and thereby preserved for later analysis.

We collated a 60 year time series (1958–2017) from 16 CPR 
subareas in the NE Atlantic, covering an area of ~2,000 × 1,500 km 
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(Figure 1a) and based on 136,903 samples. Our data set comprises 
only species/genera that have continuously been identified since 
1958, including 65 diatoms, 53 dinoflagellates and the seven most 
abundant copepods. In the case of the Calanus spp., we distin-
guished between early Calanus copepodites (CI-IV; no species level) 
and late copepodites (CV/adults of Calanus finmarchicus and Calanus 

helgolandicus). The smaller copepods were only identified to genus 
level (Oithona spp., Acartia spp., Paracalanus spp., Pseudocalanus 
spp.) or the species were merged for analysis (Centropages hamatus 
and Centropages typicus), with the exception of Temora longicornis. 
DOIs of the individual data sets are provided in the References sec-
tion (Johns, 2019).

F I G U R E  1   Summer reductions in Chl 
a, diatoms, dinoflagellates and copepods, 
but an increasing picophytoplankton 
fraction across temperate shelf areas of 
the NE Atlantic. Results from Continuous 
Plankton Recorder (CPR) data (1958–
2017) and satellite-derived ocean colour 
data (1997–2018). (a) Picophytoplankton 
fraction of Chl a during summer (July), 
climatology 1998–2018. The grid shows 
the 16 subareas that were considered for 
our data analysis. (b–i) Slope values for 
the regression between monthly median 
abundance over the last 20 years (i.e. 
=satellite era) and over the last 60 years 
(i.e. =CPR era). The vertical boxes and 
error bars indicate the median, 10th, 
25th, 75th and 90th percentiles of the 
data (n = 16). (b) Chl a concentrations, (c) 
picophytoplankton fraction of Chl a, (d) 
diatoms (1958–2017), (e) diatoms (1997–
2017), (f) dinoflagellates (1958–2017), (g) 
dinoflagellates (1997–2017), (h) copepods 
(1958–2017), (i) copepods (1997–2017). 
The late spring to summer period, where 
most of the changes occur, is highlighted 
in yellow. For this period (May–August), 
nonparametric Wilcoxon signed rank tests 
showed that slope values were overall 
significantly different from zero. Wilcoxon 
statistics: Panel (b) 391 (p < .001); (c) 
1,584 (p < .001); (d) 367 (p < .001); (e) 
right 542 (p = .019); (f) 438 (p < .001); (g) 
377 (p < .001); (h) 30 (p < .001); (i) 224 
(p < .001). n = 64
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2.2 | Satellite data

Chlorophyll data were extracted for the same 16 subareas of the NE 
Atlantic as the CPR survey. The regional monthly chlorophyll climatol-
ogy maps are calculated by averaging monthly chlorophyll values on 
a pixel-by-pixel basis over the 1997–2018 period. The monthly time 
series are computed by averaging monthly chlorophyll values over the 
different regions of interest. Both the time series and the climatology 
maps were calculated using the global merged multi-sensor product 
OCEANCOLOUR_GLO_CHL_L3_REP_OBSERVATIONS_009_065 dis-
tributed by the Copernicus Marine Environment Monitoring Service 
(CMEMS, 2018). This product was derived from the OC-CCI v4.0 data 
set produced by the ESA Ocean Colour Climate Change Initiative (ESA 
OC-CCI, Sathyendranath et al., 2018).

The picophytoplankton fractions were computed using the phyto-
plankton group satellite model of Brewin et al. (2017). The model es-
timates the fraction of total chlorophyll a by picophytoplankton using 
satellite estimates of total chlorophyll a and sea surface temperature 
(SST) as input (see Brewin et al., 2017 for further details on the al-
gorithm). Daily total chlorophyll a satellite data, from version 4.0 of 
the Ocean Colour Climate Change Initiative (OC-CCI, geographic pro-
jection, processed using the OC3 chlorophyll a algorithm, data down-
loaded at http://www.ocean colour.org/) and SST, from the Optimal 
Interpolation Sea Surface Temperature (OISST) data set (Version 2.0; 
Reynolds et al., 2007) acquired from the NOAA website (https://www.
esrl.noaa.gov/psd/data/gridd ed/data.noaa.oisst.v2.highr es.html) 
re-gridded to the same resolution as the OC-CCI data, were used in 
this study as input to the Brewin et al. (2017) model, for the period 
1997–2018. Monthly products were produced by binning and averag-
ing the data at each grid point, and climatology maps were calculated 
by averaging monthly chlorophyll values on a pixel-by-pixel basis over 
the 1997–2018 period. The monthly time series are computed by aver-
aging monthly chlorophyll values over the different regions of interest.

2.3 | Sampling at the coastal monitoring site in the 
English Channel

The coastal monitoring site L4 (50°15′N, 4°13′W) is situated in the 
Western English Channel, about 15 km southwest of Plymouth (UK) 
and has a water column depth of ~54 m (Figure 2a). Weekly sampling 
at this site was established in 1988, but here we only consider data 
since 2007 when analytical flow cytometry counts were included in 
the list of acquired parameters. Vertical profiles of temperature, salin-
ity, depth and Chl a were measured using a CTD system (SeaBird 19+) 
equipped with a fluorescence sensor (Smyth et al., 2010). Seawater 
for nutrient assays was collected from Niskin bottles attached to the 
CTD/Rosette system, and taken into acid clean, ‘aged’, 60 ml HDPE 
(Nalgene) sample bottles. Sampling depths were at 2 m (2007–2011) 
or at 2, 10, 25 and 50 m (since 2012). Clean sample and handling 
techniques were used. Samples were kept cool and in the dark and 
returned to the laboratory for analysis as soon as possible after arrival. 
Samples for flow cytometry analysis were collected from 2, 10, 25 and 

50 m depth using 10 L Niskin bottles, returned to the laboratory within 
3 hr and processed immediately. Samples for the enumeration of phy-
toplankton (≥10 µm) were collected at 10 m depth. The Tamar River is 
the main source of freshwater inflow to the Western English Channel, 
with a range of 5–140 m3/s at its mouth. Daily mean flow data for the 
Tamar River at Gunnislake were kindly provided by the National River 
Flow Archive (2007–2017) and the UK Environment Agency (2018).

2.4 | Sampling in the Celtic Sea

Sampling of 20 stations across the inner shelf, outer shelf and shelf 
break took place during two cruises in 2015 (April, July) on board the 
R.R.S. Discovery. An overview of the stations and sampled param-
eters is given in Table S1. Vertical profiles of temperature, salinity, 
depth and Chl a were measured using a CTD system (SeaBird 9/11+). 
Seawater for macronutrient analyses was collected from Niskin bot-
tles attached to the CTD/Rosette system, and taken into acid clean, 
‘aged’, 60 ml HDPE (Nalgene) sample bottles. Samples were kept 
cool and in the dark until analysis as soon as possible after arrival. 
Seawater for trace metal analyses was collected from Niskin bot-
tles attached to the titanium CTD/Rosette system and taken into 
acid clean LDPE (Nalgene) sample bottles (full details in Birchill 
et al., 2017). Clean sampling and handling techniques were used. For 
vertical profiles of phytoplankton <20 µm analysed by flow cytom-
etry, seawater was sampled at 5–13 depth intervals between 2 and 
100 m using a rosette of Niskin bottles mounted on a CTD system. 
The samples were stored at 4°C in the dark until analysis within 2 hr. 
At a reduced number of stations and depth horizons, additional iden-
tification of phytoplankton was carried out via light microscopy.

2.5 | Macronutrient analysis

The micromolar nutrient analysis was carried out using a SEAL 
Analytical 5-channel (nitrate, nitrite, phosphate, silicate, ammonium) 
AAIII segmented flow, colorimetric, autoanalyser, using classical 
proven analytical techniques (Woodward & Rees, 2001). Detection 
limits for nitrate, nitrite and phosphate were 0.02 µmol/L, and for 
ammonium was 0.05 µmol/L. The concentration of silicate was al-
ways within the detection limit of the analyser. The accuracy of the 
measurements was 1%–2%. Nitrate and nitrite concentrations were 
combined and presented as ‘nitrate’.

2.6 | Trace metal analysis

Details of trace metal sampling and analysis are provided in Birchill 
et al. (2017). In brief, trace metal samples were collected following 
GEOTRACES protocols (Cutter et al., 2017). Dissolved Fe (0.2 µm fil-
tered) was analysed using flow injection with chemiluminescence de-
tection (Floor et al., 2015; Obata, Karatani, & Nakayama, 1993), after 
spiking with hydrogen peroxide (Lohan, Aguilar-Islas, & Bruland, 2006).

http://www.oceancolour.org/
https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html
https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html
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2.7 | Flow cytometry analysis

Phytoplankton smaller than ~20 µm were analysed by flow cytom-
etry with distinction between picocyanobacteria (Synechococcus), 
picoeukaryotes and nanoeukaryotes (including coccolitophores, 
cryptophytes and other nanoeukaryotes). Samples were enumer-
ated using a Becton Dickinson FACSortTM flow cytometer (BD) 
from 2007 until October 2010 and a BD AccuriTM C6 flow cy-
tometer since October 2010. Further details of the method are 
provided in Tarran and Bruun (2015). The median cell volume of 
each of these categories was calculated from median diameter 

measurements by size-fractionating seawater samples through 
successive polycarbonate membrane filters (Poreticsis®) from 
10 µm down to 0.2 µm. A carbon conversion factor of 0.22 pg  
C/µm3 was used (Booth, 1988).

2.8 | Light microscopic analysis of phytoplankton

Samples for the enumeration of phytoplankton ≥10 µm were imme-
diately fixed with 2% Lugol's iodine and stored in cool, dark condi-
tions. Taxonomic analysis using light microscopy followed the British 

F I G U R E  2   Interannual variability in coastal Synechococcus abundance is driven by nitrate concentrations and nutrient supply via river 
outflow. Twelve years of weekly monitoring at a coastal site in the Western English Channel (L4, 2007–2018). (a) Map of the sampling 
location. (b) The proportion of picophytoplankton in the combined pico- and nanophytoplankton volume (individual values and monthly 
mean, n = 475). The years 2011, 2015 and 2018 are highlighted as picophytoplankton accounted repeatedly for >50% of the combined 
pico- and nanophytoplankton volume. (c) Comparison of prevailing environmental conditions during years with high proportions of 
picophytoplankton (2011, 2015, 2018) and years with low proportions of picophytoplankton (2007, 2008, 2009, 2010, 2012, 2013, 2014, 
2016, 2017, mean ± 1 SD). For the environmental parameters, the mean value during the stratified period (May–August) is represented, while 
ratios between picocyanobacteria (Synechococcus, SYN) and picoeukaryotes (PEUK) or nanoeukaryotes (NEUK) are based on mean values 
in August and September, when picophytoplankton is most prominent at this site. Sampling depths: pico- and nanophytoplankton (10 m), 
nutrients (0 m), Chl a (2–50 m integrated), temperature (2–10 m integrated). (d) Annual average nitrate concentration during the stratified 
period (May–August) as a predictor of the Synechococcus abundance in August and September (mean ± 1 SD, n ~ 8). (e) Annual average river 
flow rate during the stratified period (May–August) as a predictor of the Synechococcus abundance in August and September (mean ± 1 SD, 
n ~ 8). Together, nitrate concentration and river flow rate explain 61% of the interannual variability in the Synechococcus abundance: SYN 
(cells/ml) = 0.456 − 0.1669 ln river flow rate − 0.1413 ln nitrate concentration. n = number of sampling events
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and European standard protocol (BS EN 15204:2006). Mean cell 
measurements of individual taxa were used to calculate cell biovol-
ume (Olenina et al., 2006) and converted to carbon (pg C/cell) using 
the equations of Menden-Deuer and Lessard (2000).

3  | RESULTS

3.1 | Combining satellite and CPR time series

To provide the large-scale spatiotemporal context of change, we 
considered an area of ~2,000 × 1,500 km in the NE Atlantic, cen-
tred on shelf regions adjacent to the UK and divided into 16 subar-
eas (Figure 1a). In combination, both satellite and CPR data show 
similar changes over the longer term (1958–2017) and recently 
(1997–2017/2018). Between May and August/September, our in-
dices of Chl a, diatoms, dinoflagellates and total copepods have all 
declined, while the proportion of picophytoplankton to total Chl a 
has increased (Figure 1b–i). Unifying features of the trends in both 
phytoplankton and copepods are first, that they are primarily a 
summer phenomenon, and second, that they are largely consist-
ent across the 16 subareas that we tested (Figure 1), even though 
the subareas include shelf and oceanic areas and summer surface 
temperature varies from ~9°C in the north to ~19°C in the south 
(Locarnini et al., 2010). The total copepod abundance shows a ~50% 
decline when comparing median summer values across all 16 subar-
eas in recent years (1997–2017) with those from earlier years since 
the beginning of the time series (1958–1996; Figure S1). Despite 
this overall decline in copepod abundance, some species have in-
creased (Figure S1). These are the more carnivorous genera that 
select for motile food (e.g. Centropages spp., Djeghri et al., 2018), 
whereas more herbivorous genera with a preference for diatoms 
(e.g. Oithona spp., Para- and Pseudocalanus spp., Djeghri et al., 2018) 
experienced the strongest decline. The two Calanus congeners 
show opposite trends with the cold-water C. finmarchicus being 
largely replaced by the warm-water C. helgolandicus (Figure S1). 
However, the abundance of the combined offspring of these two 
species, Calanus copepodites I–IV, declined by >60%, in line with 
the overall loss of copepods across the study area (Figure S1).

3.2 | Interannual differences in the success of 
picophytoplankton

We used 12 years (2007–2018) of weekly sampling at a coastal 
monitoring site in the English Channel, L4 (Figure 2a) to encompass 
seasonal and interannual variability in the abundance of pico- and 
nanophytoplankton based on flow cytometry data. Here, picophy-
toplankton accounts on average for 22% of the combined pico- 
and nanophytoplankton cell volume, with slightly lower values in 
spring (~16%) and higher values in late summer (~30%, Figure 2b). 
However, in three of the 12 years (2011, 2015, 2018), picophyto-
plankton repeatedly contributed >50% and even as much as 90% 

to the combined pico- and nanophytoplankton volume (Figure 2b). 
The ‘record’ was set in August and September 2018 when the 
picophytoplankton fraction was >50% in six consecutive weeks. 
Comparing biotic and abiotic parameters in those 3 years with 
the mean and standard deviation of the other 9 years, we find (a) 
high picocyanobacteria-to-picoeukaryote ratios and high picocy-
anobacteria-to-nanoeukaryote ratios, (b) low NO3 concentrations 
and low NO3:PO4 and NO3:NH4 ratios, (c) low river flow rates 
and (d) variable values of Chl a and temperature (Figure 2c). This 
means that the high proportions of picophytoplankton in 2011, 
2015 and 2018 were caused by ‘blooms’ of picocyanobacteria 
(here Synechococcus sp.), while the picoeukaryote abundance was 
relatively constant. Key conditions that enabled Synechococcus to 
dominate were a combination of low nitrate stocks and low re-
supply of nutrients via river discharge, and therefore nitrate star-
vation of the surface waters. Together, nitrate concentration and 
river flow rate explain 61% of the interannual variability in the 
Synechococcus abundance (Figure 2d,e). The 3 years of high pico-
phytoplankton fractions do not show a matching pattern in any 
of the other tested parameters (Chl a, temperature, stratification, 
concentration of phosphate, silicate or ammonium). Our findings 
therefore do not support the hypothesis that temperature is a di-
rect driver of Synechococcus abundance (Paulsen et al., 2016) or 
picophytoplankton fraction (Morán, López-Urrutia, Calvo-Díaz, & 
Li, 2010). One of the years with high Synechococcus abundance at 
L4 was exceptionally warm (2018), but the other 2 years had aver-
age (2011) or below average summer temperatures (2015).

3.3 | Synechococcus abundances along a gradient of 
summer nutrient stress

To further investigate the link between Synechococcus abundance 
and nutrient availability, we explored multiple sampling transects 
across the shelf and shelf break of the Celtic Sea in spring and sum-
mer 2015 (Figure 3a). A key difference between the shelf and the 
shelf break is the resupply of nutrients to surface waters. The shelf is 
seasonally stratified; recycled nutrients accumulate below the ther-
mocline and the surface waters become increasingly iron and nitro-
gen starved (Figure 3b,c; Birchill et al., 2017). In contrast, at the shelf 
break, internal tides promote the vertical mixing of water masses and 
therefore the resupply of nutrients to surface waters (Figure 3b,c; 
Sharples et al., 2009). A comparison of vertical nutrient profiles in 
spring and summer shows that at the shelf break, a several hundred 
metre water column acts as a seasonal reservoir to fuel iron, nitrate, 
silicate and phosphate demands in the euphotic zone (Figure 3c; 
Figure S2). In line with these regional differences in summer nutri-
ent resupply, Synechococcus reached abundances of 2 × 105 cells/ml 
on the nutrient-starved shelf, while at the shelf break, abundances 
were an order of magnitude lower even though temperatures were 
higher (Figure 3b,d). Instead, the shelf break was characterized by 
higher abundances of diatoms, indicated by cell counts (Table S2) 
and enhanced NO3:Si(OH)4 ratios in subsurface waters (Figure 3c). 
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Depth-integrated Chl a concentrations were about twice as high at 
the shelf break compared to the shelf (Figure 3b), confirming the 
overall higher productivity of this region (Sharples et al., 2009).

3.4 | Traits that allow Synechococcus to outcompete 
picoeukaryotes

During our studies, Synechococcus and picoeukaryotes were of 
nearly identical size both at the monitoring site L4 (1.7 vs. 1.8 µm) 

and in the Celtic Sea (1.3 vs. 1.4 µm; Table S3). This allows us to 
examine traits, other than small size, that give Synechococcus a 
competitive advantage under low nutrient concentrations. The 
L4 seasonal cycle of the Synechococcus-to-picoeukaryote ratio 
shows a characteristic sine wave (Figure 4a), which means that 
there are times when picoeukaryotes outcompete Synechococcus 
and vice versa. Starting with a winter 1:1 ratio, picoeukaryotes 
become increasingly successful when growth conditions im-
prove in spring (enhanced daylight, sufficient nutrient availability; 
Figure S3), while from mid-summer onwards, exhausted nutrient 

F I G U R E  3   Strong stratification and therefore reduced nutrient resupply to surface waters gives Synechococcus a competitive edge in 
temperate shelf waters. Seasonal transects from the inner shelf to the shelf break of the Celtic Sea (spring and summer 2015). (a) Map of 
the sampling locations: Inner shelf (IS), Outer shelf (OS), Shelf break 1 (SB1), Shelf break 2 (SB2). (b) Average vertical profiles of temperature 
and Chl a at SB1 (n = 13), SB2 (n = 17), OS (n = 40) and IS (n = 2) in summer 2015. Based on the maximum vertical temperature difference 
(ΔTemp, 2–100 m, mean ± 1 SD) and potential energy anomaly (PEA, 2–100 m), the vertical stratification at the sampling locations ranked 
IS > OS>SB1 > SB2. ΔTemp-SB2: 2.1 ± 0.7°C; SB1: 3.1 ± 0.6°C; OS: 5.3 ± 0.7°C; IS: 5.9 ± 0.6°C. PEA-SB2: 135 J/m3; SB1: 138 J/m3; OS: 174  
J/m3; IS: 184 J/m3. (c) Average vertical profiles of nitrate, dissolved iron (dFe) and macronutrient ratios (median and individual values) at OS 
and SB2 in spring 2015 (OS, SB2: n = 7) and summer 2015 (OS: n = 14, SB2: n = 7). Vertical profiles of Si(OH)4 and PO4 are given in Figure S2. 
n = number of sampling events. (d) Abundance of phytoplankton groups in summer compared to spring (mean ± 1 SD). Synechococcus (SYN), 
picoeukaryotes (PEUK), nanoeukaryotes (NEUK). (e) Summer Synechococcus-to-picoeukaryote ratios, individual values and average (bold), at 
different sampling locations. Data derived from the upper 100 m water column. SB1 (n = 8), SB2 (n = 7), OS (n = 11), IS (n = 4). n = number of 
stations
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pools give Synechococcus an advantage and the Synechococcus-  
to-picoeukaryote ratio rises to >2. A similar seasonal cycle is 
found at a second monitoring site in the English Channel and for 
the Synechococcus-to-nanoeukaryotes ratio (Figure 4a; Figure S4). 
Across the Celtic Sea shelf break and shelf, Synechococcus-to-
picoeukaryote ratios rose from 0.7 to 15 as the surface water 
became increasingly stratified (Figure 3b,e), which reflects their 
superior abilities to outcompete picoeukaryotes under nutrient 
shortage.

Based on our data, two traits can be identified that likely con-
tribute to Synechococcus’ success in nutrient-starved waters. First, 
Synechococcus cope better with low light levels than co-occurring 

pico- or nanoeukaryotes. This is seen in the enhanced Synechococcus-
to-picoeukaryote and Synechococcus-to-nanoeukaryotes ratios 
in deeper water (25–80 m) at L4 and the Celtic Sea (Figure 4a,b). 
Another prerequisite for photosynthesis at low irradiance is a high 
affinity to iron, indicated by the major increase in Fe:N and Fe:P ra-
tios of phytoplankton when grown under low irradiance (Figure S5 
adapted from Finkel et al., 2006). In the Celtic Sea, enhanced mac-
ronutrient-to-iron ratios [NO3:dFe, Si(OH)4:dFe, PO4:dFe] occur in 
subsurface waters of ~20 to 60 m depth where Synechococcus ac-
count for up to 80% of the combined pico- and nanophytoplankton 
volume (Figure 4b). This implies that Synechococcus is efficient at 
iron uptake.

F I G U R E  4   Traits that enable 
Synechococcus to outcompete similar size 
picoeukaryotes during nutrient shortage: 
Efficient acquisition of light and iron in 
subsurface waters. (a) Seasonal cycle 
of Synechococcus-to-picoeukaryote 
ratios (SYN:PEUK) and Synechococcus-
to-nanoeukaryote ratios (SYN:NEUK; 
monthly median, n ~ 48) at the coastal 
monitoring site L4. (b) Analogy in the 
vertical profiles of SYN:PEUK, SYN:NEUK 
and macronutrient-to-dissolved iron ratios 
at OS in summer 2015. For all parameters, 
individual values and the median are 
presented (a few data points are beyond 
the plotted scale). Number of sampling 
events: SYN:PEUK; SYN:NEUK spring 
(n = 15), summer (n = 11); macronutrients 
and dissolved iron spring (n = 7), summer 
(n = 14). (c) Pico- and nanophytoplankton 
community composition (% biovolume) 
along a nutrient irradiance gradient. 
High PAR values (top) refer to ~10 m 
water depth, low PAR values (bottom) 
to the subsurface Chl a maximum or 
40–50 m water depth. Information on 
microscopically counted diatoms and 
dinoflagellates is given in Table S2a

0

4

8

12

16

SY
N

:N
EU

K 

0

1

2

3
SY

N
:P

EU
K 

 2 m
10 m
25 m
50 m

   J F M A M J  J  A S O N D J  F M A M J  J  A S O N D

(a)

L4

100
80
60
40
20
0

0 5 10 15 20 25
SYN:PEUK 

D
ep

th
 (m

)

100
-
-

80
-60
-40
-

-
-

-
-
-

-
-

-
-
- 20

0
0 100 200 300 400

SYN:NEUK

spring
summer

100
80
60
40
20
0

0 4 8 12 16

NO3:dFe
(µM:nM)

0 3 6 9 12

Si(OH)4:dFe
(µM:nM)

0.0 0.5 1.0 1.5 2.0

PO4:dFe
(µM:nM)

D
ep

th
 (m

)

Nutrient availability (NO3, dFe, PO4)

SYN PEUK NEUK

PA
R

1            2           3           4            5            6            7           8

IS,Jul       OS,Jul     SB1,Jul    SB2,Jul     L4,Aug     SB2,Apr    OS,Apr     L4,May

(b)

(c)

OS

OS
spring

summer



     |  9SCHMIDT eT al.

4  | DISCUSSION

4.1 | The Synechococcus ‘strategy’: Structural 
investment for sustained resource acquisition

Our study shows that Synechococcus can best outcompete pico- and 
nanoeukaryotes in subsurface waters where light levels are as low 
as 2% surface irradiance (Figure 4a,b; Figure S6). Occupying these 
darker waters enhances the chances of nutrient uptake near the pyc-
nocline; however, it requires efficient harvesting of both light and 
iron to sustain photosynthesis (Finkel et al., 2006).

Compared to the dominant picoeukaryote in the study area, the 
prasinophyte Micromonas pusilla (Not et al., 2004), Synechococcus’ 
suite of light-harvesting pigments is superior for light absorption 
in subsurface coastal waters (Figure 5). Synechococcus populations 
from the Western English Channel are capable of Type IV chromatic 
acclimation (Humily et al., 2014), which means that they can change 
the ratio of blue light-absorbing phycourobilin (Amax = 495 nm) versus 
green light-absorbing phycoerythrobilin (Amax = 550 nm) depending 
on the ambient light colour (Grébert et al., 2018). In contrast, chlo-
rophyll b, the light-harvesting pigment of M. pusilla has its maximum 
absorption in darker blue light (Amax = 480 nm; Kunugi et al., 2016), 
which is less suitable in subsurface coastal waters where green light 
prevails (Figure 5).

Other studies have shown that, in contrast to their oceanic coun-
terparts, coastal Synechococcus are well adapted to fluctuating iron 
concentrations (Mackey et al., 2015; Palenik et al., 2006). Their abil-
ity to use or even produce strong iron chelators (e.g. siderophores; 
Hutchins, Witter, Butler, & Luther, 1999; Ito & Butler, 2005; Wilhelm 
& Trick, 1994) and their enhanced iron storage capacities (Mackey 
et al., 2015) may give Synechococcus a competitive edge over pi-
coeukaryotes (Figure 5). Laboratory experiments have shown that 
iron uptake rates of the siderophore-producing coastal Atlantic 
isolate Synechococcus PCC7002 are ~3 times higher than those of 
a non-siderophore-producing oceanic strain (Lis, Kranzler, Keren, 
& Shaked, 2015). However, it is currently unknown how wide-
spread siderophore production is among coastal picocyanobacteria 
(Hopkinson & Morel, 2009).

On the downside for Synechococcus, both the phycobi lisome-
based light-harvesting system and siderophore transport systems 
are costly cell structures (Lis et al., 2015; Ting Rocap, King, & 
Chisholm, 2002), which may explain the exceptionally high nitrogen 
demand and relatively low growth rates of coastal Synechococcus 
(Figure 5). For a given carbon content, the Synechococcus PCC7002 
strain contains 64% more nitrogen than M. pusilla (Blanco- 
Ameijeiras et al., 2018; Maat, Crawfurd, Timmermans, & Brusaard, 
2014). In line with this, the protein investment for the phycobili-
some-based light-harvesting system of Synechococcus is >3 times 
higher than for the chlorophyll a/b-based antennae of green 
algae (Ting, Rocap, King, & Chisholm, 2002). A less demand-
ing structural composition may enable M. pusilla to grow about 
twice as fast as Synechococcus under nutrient replete conditions  
(Marañón et al., 2013).

Slow grow rates make Synechococcus vulnerable to grazing con-
trol. In the laboratory, Synechococcus growth shows a positive re-
lationship to temperature (Agawin, Duarte, & Agustí, 1998), but at 
L4, their abundances reach the annual minimum not in the coldest 
month February, but in May when their mixotrophic grazers (Tsai, 
Chiang, Chan, Lin, & Chang, 2007) find ideal growth conditions. 
Similar size picoeukaryotes seem to be less affected by grazing, 
as the low Synechococcus-to-picoeukaryote ratios in May indicate. 
Likewise, at the nutrient-replete shelf break of the Celtic Sea, 
Synechococcus remained under grazing control during summer, even 
though temperatures were higher than on the shelf.

Overall, we suggest that the strategy of coastal Synechococcus 
consists of high structural investments for sustained resource ac-
quisition (light, nutrients), with the trade-off of low growth rates and 
high vulnerability to grazing. This strategy pays off when compet-
ing pico- and nanoeukaryotes are severely nutrient limited and their 
grazing pressure eases.

4.2 | Synechococcus are extending their global 
distribution

Picocyanobacteria of the genus Synechococcus are among the 
most important and widespread marine primary producers 
(Flombaum et al., 2013). This is enabled by the existence of >20 
genetically distinct clades, some of which inhabit cold, meso-
trophic waters, others warm, oligotrophic open ocean or sites 
with permanently low iron availability (Paulsen et al., 2016; Sohm 
et al., 2016). Some strains are specifically adapted to the dynamic 
coastal environments, for example, via their pigment types and 
capacity to sense and respond to changes in iron availability 
(Grébert et al., 2018; Mackey et al., 2015; Palenik et al., 2006).

Niche models project a 14% increase in global cell numbers of 
Synechococcus by the end of the 21st century, which involves their 
spatial expansions (Flombaum et al., 2013). While all four of their 
model projections agree that these increases will occur in low lati-
tudes, some models project also up to 50% increase in Synechococcus 
numbers for mid- and higher latitudes (40–60°N; Flombaum et al.,  
2013). Our study shows that, already in the present day, Synechococcus 
can dominate the phytoplankton biomass in temperate shelf and 
coastal areas if certain conditions are met. Crucial are not high tem-
peratures per se, but rather a reduced resupply of nutrients to surface 
waters. We identify intense stratification and low river discharge as 
conditions that can lead to this nutrient starvation. Both macronu-
trients and dissolved iron are affected by this lack of resupply, with 
iron stress only recently recognized to extend onto the NW European 
shelf (Birchill et al., 2017, 2019). Our process studies suggest that 
Synechococcus is highly competitive under nitrogen–iron colimitation, 
a state of nutrient limitation that is pervasive throughout ~50% of the 
global surface ocean (Browning et al., 2017).

Extended periods of water column stratification, droughts and 
heat waves are predicted for future summers across the NE Atlantic 
(Holt et al., 2016; IPCC, 2019; Yool, Popova, & Coward, 2016). We 
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suggest that these conditions will increasingly benefit the advance 
of Synechococcus into shelf areas.

4.3 | Implications for energy flow through pelagic 
food webs

Zooplankton such as copepods are considered beacons of climate 
change (Richardson, 2008) and can be more sensitive indicators 
than the environmental variables themselves, due to their non-
linear responses that can amplify subtle environmental changes 
(Taylor, Allen, & Clark, 2002). Moreover, it has been suggested 
that trophic amplification can lead to significantly larger changes in 
fishery resources than implied by net primary production changes 
alone (Chust et al., 2014). In this respect, we have to interpret the 
overall ~50% decline in copepod abundance over the last 60 years 
(Figure S1) and the large spatial extent of this decline (Figure 1) as 
clear indications that growth conditions for zooplankton in the NE 
Atlantic have changed (time series: 1958–1996) and are changing 
(time series: 1997–2017).

Biogeographical and phenological shifts due to increasing tem-
perature are known to be occurring in the north Atlantic (Beaugrand 
et al., 2002). However, alternative (non-mutually incompatible) mecha-
nisms have also been proposed, namely declining primary production as 
a cause of the copepod decline in the North Sea (Capuzzo et al., 2017). 
Based on an extensive network of time series, Bedford et al. (2020) show 
that this long-term copepod decline extends from inshore to offshore 
areas right across the NW European shelf. Our study spans an even 
larger area and by detailing the species composition and seasonal timing 
of the copepod decline, we shed light on the potential causes. First, the 
copepod decline is observed across the whole NE Atlantic and fringing 
shelves; too large an area to be solely explainable by the observed mag-
nitude of range shifts (Chivers, Walne, & Hays, 2017). Second, it occurs 
for both large and small copepod species and across those with different 
temperature preferences. Third, it is a summer phenomenon, at the time 
when the food composition has changed the most (Figure 1). We con-
clude that, in addition to the direct effects of rising temperature, signifi-
cant changes are occurring in the food environment of these copepods.

Even though Synechococcus can reach near-bloom concentra-
tions in subsurface layers (Chl a ~ 1 mg/m3, Figure 3b), this bio-
mass is of limited use for copepods as they cannot capture cells 
<5 µm efficiently (Kiørboe, 2008). Moreover, like all cyanobacteria, 
Synechococcus lack biomolecules such as omega-3 polyunsaturated 
fatty acids and sterols (Jónasdóttir, 2019; Patil, Källqvist, Olsen, 
Vogt, & Gislrød, 2007; Ruess & Müller-Navarra, 2019). These com-
pounds are essential for both copepods and fish to acquire from 
their diet in order to sustain egg production and growth. Thus, under 
summer conditions, the ‘classical food chain’ from diatoms or dino-
flagellates via copepods to fish is severely reduced, giving way to the 
‘microbial food web’ from Synechococcus via flagellates and ciliates 
to copepods and fish. However, this microbial pathway is less effi-
cient, both because of the increased number of trophic steps and the 
lower nutritional quality of the main primary producer (Figure S7).

While we highlight the role of diminishing food quality, other fac-
tors contribute to summer becoming an increasingly stressful period 
of the year for pelagic consumers. These include a spring bloom that 
occurs earlier in the year (here indicated by a Chl a increase in April 
and decrease in May, Figure 1b) and the overall decrease in phyto-
plankton biomass in summer (Figure 1b). Together, these all lengthen 
the summer period of low food quality and quantity for zooplankton. 
Winter food shortage is easier manageable due to low temperatures 
and therefore low basal metabolism, but respiration costs are high in 
summer and prolonged lack of food at this time of year has more ad-
verse effects. Such a nutrition-related mismatch during summer will 
increasingly challenge temperate shelf and coastal areas to maintain 
their historically important food chains.
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