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Abstract 12 

Phytoplankton trait-based modeling is a mechanistic approach to describing species and 13 

community dynamics in ecosystem models. Trait values are usually extracted from 14 

laboratory studies of single species, which presents challenges for understanding the 15 

immense diversity of phytoplankton species and the wide range of dynamic ocean 16 

environments. Here we use a Bayesian approach and a trait-based model to extract traits 17 

for four functional types and ten diatom species from field data collected at Station L4 in 18 

the Western Channel Observatory. We find differences in maximum net growth rate, 19 

temperature optimum and sensitivity, half-saturation constants for light and nitrogen, and 20 

density-dependent loss terms across the functional types. We find evidence of very high 21 

linear loss rates, suggesting that grazing may be even more important than commonly 22 

assumed and differences in density-dependent loss rates across functional types, indicating 23 

the presence of strong niche differentiation among functional types. Very low half-24 

saturation constants for nitrogen at the functional type level may indicate widespread 25 

mixotrophy. At the species level, we find a wide range of density-dependent effects, which 26 

may be a signal of diversity in grazing susceptibility or biotic interactions. This approach 27 

may be a way to obtain more realistic and better-constrained trait-values for functional 28 

types to be used in ecosystem modeling.  29 

30 
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Introduction 31 

Phytoplankton perform about half of global photosynthesis, form the base of the 32 

marine food web and are an important driver of biogeochemical cycles (Field et al. 1998). 33 

Model projections of changes in phytoplankton primary production with climate over the 34 

next century are extremely variable (Finkel et al. 2010, Finkel 2014). Projections of 35 

changes in communities and biogeochemical cycling usually depend on mechanistic models 36 

of phytoplankton productivity parameterized with traits of phytoplankton species (Le 37 

Quéré et al. 2005, Litchman et al. 2006). The traits used in models vary according to the 38 

research questions, but most commonly include maximum growth rate, Arrhenius-like 39 

temperature effects on growth rate, half-saturation parameters linking the growth rate to 40 

resource availability, and grazing susceptibility (Litchman et al. 2007, Irwin & Finkel 2016). 41 

At present, many of these parameters are not well constrained for phytoplankton 42 

communities (Anderson 2005, Irwin & Finkel 2016). 43 

Phytoplankton are evolutionarily and ecologically diverse and include many phyla 44 

and tens of thousands of species (Sournia et al. 1991, de Vargas et al. 2015). This 45 

complexity presents several challenges for trait-based modeling. Trait values measured in 46 

the lab are almost always determined for a few key species, while their application in 47 

models of natural communities usually apply to dozens to thousands of species. The 48 

aggregation of similar species into biogeochemically defined functional types greatly 49 

simplifies models, but there is no clear way to decide which species should be used as 50 

representatives of each functional type (Merico et al. 2004, Le Quéré et al. 2005, Hood et al. 51 

2006). Trait values for species in the same functional type and trait values used in models 52 

vary widely, commonly by a factor of 10-100 (Anderson 2005, Irwin & Finkel 2016). It is 53 

not clear how to average trait values across species to represent a functional type since 54 

phytoplankton growth rate is a non-linear function of trait values. Furthermore, species 55 

well adapted to lab conditions may not be representative of their respective functional 56 

types growing in natural communities. A second set of challenges concerns the difficulty of 57 

using lab-based estimates of trait values in a field context. Trait values quantified using 58 

laboratory cultures under controlled conditions are stable under repeated measurement, 59 

but there is a challenge in identifying the most appropriate conditions for culture 60 

experiments. For example, the maximum growth rate is commonly estimated in the lab, but 61 
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differences in culture conditions from one lab to another means there is always some doubt 62 

about the true maximum growth rate for a species (Boyd et al. 2013). Trait-values, 63 

including maximum growth rate and nutrient uptake rates, estimated in the field can differ 64 

substantially from those measured in the lab (Furnas 1991, Laws 2013, Lomas et al. 2014). 65 

Cultures grown under equilibrium conditions in the lab may not reveal key acclimation 66 

traits or the consequences of environmental variability that can be crucial to the fate of 67 

phytoplankton in natural communities (Grover 1991, Raven 2011). In summary, trait 68 

values for most phytoplankton species are not available and we do not currently have 69 

enough data to strongly constrain trait values used in functional type models (Anderson 70 

2005, Flynn et al. 2015).  71 

An approach that addresses many of these challenges for determining trait values 72 

for function types is to estimate those values from long-term time series of natural 73 

communities observed in the field. Our goal is to obtain quantitative estimates of trait 74 

values that define the dynamics of the biomass of phytoplankton functional types. These 75 

trait values will be affected by the species that are present in the community, the range of 76 

environmental conditions observed, the spectrum of environmental variability, as well as 77 

abiotic and biotic interactions, so we call them realized traits in recognition that they are 78 

not the fixed traits of a particular species. This label is an echo of the difference between 79 

fundamental and realized niches, where the realized niche is measured in a community and 80 

can differ from the fundamental niche (Hutchinson 1957, Colwell & Rangel 2009). Here we 81 

obtain realized trait values by fitting a model of biomass dynamics to time series of 82 

phytoplankton functional type biomass and coincident environmental conditions.  The 83 

model describes temporal biomass changes in terms of net growth rate modified by 84 

temperature, irradiance, total available nitrogen concentration, and a density dependent 85 

loss term.  We adopt a hierarchical Bayesian modeling approach and use Markov-chain 86 

Monte Carlo (MCMC) methods to simulate from the joint posterior of the model 87 

parameters, in particular the traits of interest. Realized trait values estimated from field 88 

data may be quite different from trait values obtained in the lab and may vary across 89 

communities in different locations. The advantages of these realized traits compared to 90 

species-level traits quantified in the lab is that these traits by definition describe observed 91 

community dynamics.  92 
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 93 

Methods 94 

Data 95 

We used data from the Western Channel Observatory (WCO) oceanographic time-96 

series (www.westernchannelobservatory.org.uk) in the Western English Channel. The 97 

WCO data include phytoplankton, zooplankton, and fish trawls together with 98 

measurements of several physical and chemical environmental parameters such as 99 

temperature, salinity and nutrient concentrations. The data used here were collected at 100 

Station L4 (50° 15.00′N, 4° 13.02′W) located about 10 km south of the Plymouth 101 

breakwater with a water column depth of about 50 m (Harris 2010). We used 349 weekly 102 

observations of taxonomically resolved phytoplankton abundance, temperature, nitrate, 103 

nitrite, and ammonium concentrations sampled at 10 m depth in the upper mixed layer and 104 

sea-surface irradiance collected over a 7-year period spanning 15 April 2003 through 31 105 

December 2009. Average biovolume measurements were recorded for each species 106 

(Widdicombe et al. 2010) and converted to carbon content (Menden-Deuer & Lessard 107 

2000) to obtain biomass concentrations (mg C m–3) for each species. We used observations 108 

of 193 taxonomic categories identified as 138 species, 27 genera, and 28 size-classes for 109 

broader morphological categories. Biomass concentrations were aggregated into four 110 

functional types: diatoms, dinoflagellates, coccolithophorids, and phytoflagellates. The 111 

phytoflagellate type is taxonomically diverse but is dominated (more than 50% of the 112 

biomass) by unidentified flagellates less than 5 µm in diameter. Some species may be 113 

benthic or tychoplanktonic. We added together the concentrations of nitrate, nitrite, and 114 

ammonium to obtain a single inorganic nitrogen (mg m–3) concentration. Most of the 115 

variation in total nitrogen concentration is due to variation in nitrate concentration. 116 

Irradiance (mol m–2 d–1) was measured continuously above the sea-surface near Station L4 117 

at Plymouth and averaged over the day. Data for missing weeks were imputed by linear 118 

interpolation using the na.approx function from the zoo library in R (R Core Team 2016).  119 

 120 

The model  121 

We describe the multiplicative growth rate of each functional type’s biomass as the 122 

product of the following 5 components: (i) a net growth rate reduced by limitation due to 123 

http://www.westernchannelobservatory.org.uk/
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either low light or low nitrogen concentration, (ii) a temperature effect, (iii) a density 124 

feedback term dependent on the biomass of the focal functional type, (iv) a density 125 

feedback term dependent on the biomass of all phytoplankton not in the focal functional 126 

type, and (v) a positive multiplicative noise term. The change in biomass from one week to 127 

the next (from week w–1 to week w) for each functional type  is modeled by multiplying 128 

the biomass in week w–1 by the (multiplicative) growth rate according to a stochastic 129 

Gompertz model (Saitoh et al. 1997, Mutshinda et al. 2009, Mutshinda et al. 2011). We 130 

chose to model the net growth rate as a linear combination of density-independent growth 131 

rate and density-dependent losses, which is most appropriate given the lack of direct 132 

information about grazing rates, grazer biomass, or viral abundance. Therefore, the 133 

biomass concentration  (in 3mCmg  ) of the ith functional type for each week after the 134 

first  is described by 135 

 136 

,   (1) 137 

 138 

where  is the combined biomass concentration of all phytoplankton not including the 139 

ith functional type during week w. The growth rate, which appears in the exponent of Eq. 140 

(1), is composed of a density-independent component, , and a density-dependent 141 

component, . Stochastic noise enters the biomass dynamical 142 

model (Eq. 1) through the random multiplicative noise ηi,w > 0 that we assume to be serially 143 

independent and log-normally distributed with median one and mean , so that 144 

the  are independently zero-mean normal with respective variances . The 145 

unstructured stochastic noise term lumps together the variability due to all un-modelled 146 

processes: demographic stochasticity, sampling error and the environmental variability 147 

attributable to other variables not included in the model. The log-normal distribution is 148 

widely used to describe species abundance and biomass patterns (MacArthur 1960, 149 

Sugihara 1980)  on both theoretical and empirical grounds. We showed that biomass 150 
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distributions at this site are log-normal in an earlier study (Mutshinda et al. 2016). The 151 

notation is summarized in Table 1. 152 

The traits to be estimated appear in the growth rate terms. The density-independent 153 

component of growth rate, , for functional type  from week w-1 to week w depends on 154 

Michaelis-Menten functions of irradiance (PAR, mol m–2 d–1) and nitrogen concentration (N, 155 

µmol L–1), and a function of temperature (T, °C), according to  156 

𝑟𝑖,𝑤 = µ𝑖min (
𝑃𝐴𝑅𝑤−1

𝑘𝐸,𝑖+𝑃𝐴𝑅𝑤−1
,

𝑁𝑤−1

𝑘𝑁,𝑖+𝑁𝑤−1
) − 𝛽𝑖|𝑇𝑤−1 − 𝜃𝑖|     (2) 157 

where  denotes the optimum growth temperature for the biomass of functional type  158 

and  is a temperature sensitivity parameter  intended to quantify the increase in the 159 

density-independent growth rate  for a 1°C change in temperature towards the 160 

optimum temperature  and vice-versa. The optimal temperatures  for growth of each 161 

functional type are assigned priors and estimated from the data within our Bayesian 162 

framework.  Saturating functions of irradiance and nitrogen concentration and their 163 

combination with a minimum function are commonly used to moderate growth rate 164 

(Denman & Peña 1999, Healey et al. 2009). The net growth rate  is the density-165 

independent growth rate of the ith functional type at optimal temperature, irradiance and 166 

nitrogen concentration. The effects of irradiance and nitrogen concentration on the growth 167 

rate are represented by saturating functions parameterized by the half-saturation 168 

constants kE,i > 0 and kN,i > 0 which are respectively the irradiance level and nitrogen 169 

concentration at which the net growth rate at optimal temperature drops to . The 170 

Michaelis-Menten saturating functions are combined with a minimum function so that only 171 

the most limiting resource affects growth rate at a time, according to Liebig’s law of the 172 

minimum (van der Ploeg & Kirkham 1999). During model development, we explored the 173 

possibility of a multiplicative interaction between light and nutrients, but found the results 174 

to be more difficult to interpret. 175 

To accommodate density-dependent factors including grazing, viral attack, 176 

aggregation and sinking, we introduce density dependent loss terms. In the absence of 177 

direct observations of these losses, we parameterize the density-dependent losses with  178 

wir , i

i i

0i

wir ,

i i

0i

2/i

i
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and  to quantify the feedbacks on the growth rate of the ith functional type from its own 179 

biomass and from the combined biomass of the other functional types in the community, 180 

respectively. The terms involving  and  distinguish two different density-dependent 181 

loss terms, which could result from specialist and generalist grazer populations. For the 182 

purposes of estimating the parameters in the model, we rewrote Eq. (1) on the natural 183 

logarithmic scale as 184 

𝑦𝑤 = 𝑦𝑤−1 + µ𝑖min (
𝑃𝐴𝑅𝑤−1

𝑘𝐸,𝑖+𝑃𝐴𝑅𝑤−1
,

𝑁𝑤−1

𝑘𝑁,𝑖+𝑁𝑤−1
) − 𝛽𝑖|𝑇𝑤−1 − 𝜃𝑖| + 𝛼𝑖𝑦𝑖,𝑤−1 + 𝜙𝑖𝑧𝑖,𝑤−1 + 𝜀𝑖,𝑤 185 

            (3) 186 

where , zi,w = log(Zi,w) and . 187 

We adapted the functional-type level model described above to define traits at the 188 

species level. This task was challenging for two reasons: the greatly increased number of 189 

parameters to be estimated and the fact that most species are absent from the time series 190 

for most of the time, either because they were absent or their abundance was below the 191 

detection limit. By contrast, missing values were rare in the time series of functional type 192 

biomasses. We restricted the species-level analysis to the 10 diatoms that were observed in 193 

about half of the sampling occasions or more. These species may not be representative of 194 

the functional type dynamics as a whole because the selected species only represent 11% 195 

of the diatom functional type biomass. In order to estimate a growth rate, biomass 196 

observations for any particular species must be available on numerous pairs of successive 197 

weeks. We extracted pairs of observations from the full time series to estimate the growth 198 

rate from week w-1 to w, conditioned on the species being observed during week w-1. The 199 

species-level model differed from Eqns. (1-3) only in the definition of the biomass terms 200 

 and  and the interpretation of the density-dependent terms α and ϕ. To emphasize 201 

the differences between the functional type and species-level models, we have added a 202 

superscript S to the notation for each trait in the species-level model. In the species model, 203 

was the biomass of species i  in week w, and Zi,w was the sum of the biomass of all 204 

species in the same functional type as species i  except for species i in week w. The density-205 

dependent parameter α reflected the effect of species i on itself while ϕ described the 206 

i

i i

)log( ,, wiwi Yy  ),0(~)log( 2
,,, wiwiwi N  

wiY , wiZ ,

wiY ,



 8 

density-dependent loss due to all species in the same functional type as species i except for 207 

species i.  208 

The model was developed and fit to the data with a Bayesian approach (Gelman et 209 

al. 2013). Bayesian inference is an approach to statistical inference where all unknown 210 

quantities are considered as random variables.  The uncertainty about plausible values of 211 

an unknown quantity   before the data is taken into consideration is represented by a 212 

probability distribution )(p  called the prior distribution. Upon observing the data, the 213 

prior distribution is combined with the likelihood function (the sampling distribution of 214 

the data) )|( yp  through Bayes’ rule to produce a posterior distribution )|( yp    215 

)(

)()|(
)|(

yp

pyp
yp


  ,        (4) 216 

 217 

where   dpypyp )()|()(  is the marginal distribution of the data which is the 218 

normalizing constant making )|( yp   a proper probability distribution. Therefore, Eq. (4) 219 

can be written as  220 
 221 

)()|()|(  pypyp  .        (5)  222 

 223 
where   stands for “ proportional to”. 224 

The posterior distribution represents the data-updated knowledge and forms the 225 

basis of Bayesian inference about unknown quantities including model parameters, missing 226 

values, and yet unseen data. Having an entire distribution rather than point estimates 227 

allows one to fully account for uncertainty. Bayesian conclusions are essentially probability 228 

statements based on the posterior distribution. All Bayesian computations are based on 229 

probability rules, resulting in more intuitive statements than counterparts in classical 230 

statistics. 231 

The hierarchical priors in the Bayesian model allowed us to specify a model with 232 

many traits for many functional types or taxonomic units without risking over-fitting the 233 

data or running into convergence problems that plague other nonlinear optimization 234 

methods. The shared hyper-priors effectively pooled data across taxa when there are few 235 

data while allowing trait value estimates to be differentiated across taxa when supported 236 

by the data. The model fitting to the functional type biomass data was based on the 237 

following essentially non-informative prior distributions for the model parameters. 238 
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)0I()100,0N(~ ,, iEiE kk , where denotes the indicator function which takes the value 1 239 

when its argument is true and the value 0 otherwise, )0I()10,0N(~ ,, iNiN kk , 240 

)0I()1,0N(~ ii  , , where  is the mean temperature over the study period, 241 

, ,  ,   and . We 242 

imposed fairly informative  priors independently on the net growth rates  243 

to enforce identifiability. For the species model, the hierarchical priors were designed to 244 

provide identical trait estimates for all species if the data did not oppose this possibility. 245 

The main problem of Bayesian inference comes from the difficulty in evaluating 246 

integrals like the one in the denominator of Eq. (4). In most practical cases the posterior is 247 

not available in closed form so sampling-based algorithms, mostly Markov chain Monte 248 

Carlo (MCMC) methods (Gilks 1996) are used to simulate from it and base inferences on 249 

the simulated sample. Markov chain Monte Carlo methods indirectly simulate from a 250 

distribution g when direct simulation from g is difficult or impossible. The rationale of 251 

MCMC sampling is to set up a Markov chain whose stationary distribution is the 252 

distribution g of interest, in this case the joint posterior distribution )|( yp  . Consequently, 253 

simulation of ,..., )2()1(   from the chain yields a series with the property that the marginal 254 

density of )( j  for large enough j  is approximately g . In other words, for a large enough 255 

“burn-in” period n , ,..., )2()1(  nn   can be regarded as a dependent series with marginal 256 

density g . Therefore, empirical moments of this series yield approximations of the 257 

moments of g . 258 

We used Markov chain Monte Carlo (MCMC) simulation (Gilks 2005) implemented 259 

in OpenBUGS (Thomas et al. 2006) to sample from the joint posterior of the model 260 

parameters. We assessed the convergence of the Markov chains through visual inspection 261 

of traceplots and autocorrelation functions. We ran three parallel Markov chains starting 262 

from dispersed initial values for 60,000 iterations and discarded the first 30,000 samples 263 

from each Markov chain as burn-in. We used the remaining 30,000 samples to generate the 264 

posterior distributions on our parameters, retaining every 30th sample to reduce the 265 

sample autocorrelation. Our results were robust to changes in the range of priors.  266 

I(.)

)10,N(~ Ti T

)1,0(N~i )1,0(N~i ),InvGamma(~2
, bawi )1,1Gamma(~a )1,1Gamma(~b

)5,5(Gamma i
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 267 

Results  268 

The three environmental drivers of phytoplankton growth rate included in this 269 

study (temperature, irradiance, and nitrogen concentration) exhibit strong, regular 270 

seasonal oscillations over the seven-year time series (Widdicombe et al. 2010, Mutshinda 271 

et al. 2016). The phytoplankton biomass for each of four functional types each exhibit 272 

distinctive patterns of intra-annual variation (Fig. 1). Diatoms bloom first, increasing 273 

steadily in biomass from day 60 to day 180. Dinoflagellates and coccolithophorids bloom 274 

slightly later, reaching a maximum biomass at approximately day 225. The amplitude of 275 

dinoflagellate biomass is the greatest across the four types and their sustained maximum 276 

growth and loss rates are also the largest. Phytoflagellates have the least inter-annual 277 

variability, with two minor biomass peaks at approximately day 110 and day 215. Our 278 

model is able to describe the biomass dynamics, explaining on average between 51% (for 279 

diatoms) and 95% (for phytoflagellates) of the variation in the biomass of individual 280 

functional types. More importantly, the model produces accurate biomass predictions 281 

reflected in narrow, relative to the total variation in the data, posterior predictive intervals 282 

(Fig 1). There was insufficient temporal resolution in the data to observe short-term 283 

acclimation to changing conditions, so our focus remained on steady-state traits similar to 284 

those usually used in phytoplankton community models. 285 

 286 

Functional-type level analysis 287 

The maximum net growth rate trait, , is the largest growth rate of functional type 288 

 under any irradiance and nutrient conditions, at its optimal temperature for growth, not 289 

including density-dependent grazing, but incorporating linear grazing rates. There is 290 

substantial variability in the maximum net growth rate between functional types (whiskers 291 

on Fig. 2a). As a group, diatoms have the largest net growth rate with median doubling time 292 

3.9 days, followed by dinoflagellate with mean doubling time 5.5 days, and phytoflagellate 293 

with mean 6.7 days.  Coccolithophores have the lowest net growth rate with median 294 

doubling time 8.9 days.  295 

i

i
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The estimated optimal temperatures for growth for diatom, dinoflagellate, 296 

coccolithophorid, and phytoflagellate biomass are 15°C, 20°C, 19°C and 11°C, respectively, 297 

implying that higher temperature conditions would favor dinoflagellate and 298 

coccolithophorid biomass accumulation (Fig. 2b).  As a group, dinoflagellates are the most 299 

responsive to temperature changes with a sensitivity parameter roughly twice as large as 300 

those of diatoms and coccolithophorids (Fig. 2c).  On the other hand, the phytoflagellate 301 

biomass is essentially insensitive to temperature changes at Station L4.  302 

The nitrogen (nitrate, nitrite, plus ammonia) half-saturation constants, kN, for all 303 

groups are comparable to those found in lab studies and used in models (Fig. 2d). The 304 

phytoflagellates have the smallest half-saturation constants for irradiance, which is 305 

consistent with their relatively small amplitude of biomass variation over the time series. 306 

The half-saturation constants for irradiance are not credibly different from one another for 307 

the other three phytoplankton functional types and exhibit variability of two-fold or more 308 

within their 95% credible intervals (Fig. 2e). The half-saturation constants for nitrogen 309 

concentration (posterior means ranging from 0.02-0.3 µmol L–1) are quite close to the 310 

minimum values of the corresponding environmental data observed over the time-series 311 

(0-15 µmol L–1), which suggests that this trait may not be particularly informative for 312 

predicting the growth rate of these functional types at this location for most of the year. 313 

Conversely, the half-saturating constants for sea-surface irradiance (10-30 mol m–2 d–1) 314 

span most of the lower half of the inter-annual variation in irradiance (10-50 mol m–2 d–1), 315 

indicating that phytoplankton growth rates vary with irradiance (light is sub-saturating) 316 

for much of the year (Fig. 2e).  317 

All four phytoplankton functional types are affected by density-dependent loss rates 318 

(Fig. 2f). These losses have the largest effect at high biomass concentrations and can 319 

explain the maximum biomass concentration for each functional type, but they are also 320 

active at low biomass concentrations and these loss terms are responsible for decreases in 321 

biomass when growth conditions are unfavorable. Density-dependent losses are a 322 

combination of grazing, viral attack, and aggregation and sinking following bloom collapse. 323 

For each functional type, we distinguished between density-dependent feedback due to the 324 

functional type’s own biomass (α) and the feedback due to the aggregate biomass of all the 325 

other functional types (ϕ). If the density-dependent loss terms are primarily due to grazing, 326 
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we could interpret α as representing losses due to grazers specializing on one functional 327 

type and ϕ as representing losses due to generalist grazers supported by populations of the 328 

other functional types. Since α < 0 for all functional types, but ϕ is not different from 0 for 329 

all types, the biomass of each functional type is largely regulated by specialist grazers and 330 

generalist grazers have weak density-dependent effects.  331 

 332 

Species-level analysis 333 

Diatom species’ net growth rates were smaller than the functional type counterpart 334 

for all ten species examined (Fig. 3a). At the functional-type level, diatoms were weakly 335 

affected by temperature (β < 0.1 week–1 °C–1) and this result carried through for the diatom 336 

species (most βS close to 0.1, Fig. 3b). The optimal temperatures were extrapolated outside 337 

the range of observed temperatures, and thus are very uncertain (data not shown). Diatom 338 

species’ half-saturation constants for irradiance are lower than the functional type 339 

counterpart whereas diatom species’ nitrogen half-saturation constants are higher than the 340 

functional type level estimate.  341 

For the species model, the density dependent loss analysis was redesigned to 342 

identify species-specific density-dependent loss rates and generic functional type density-343 

dependent loss rates. The posterior distributions of the species-level density dependent 344 

parameters αS and ϕS imply a stronger negative feedback on each diatom species’ biomass 345 

growth from its own biomass than that from the combined biomass of other diatom species 346 

i.e., ss   (Fig. 3e)S), consistent with niche differentiation within functional types 347 

(Mutshinda & O’Hara 2011). Some of the αS and ϕS for diatoms were positive, suggesting 348 

the presence of mutually beneficial or commensal effects in some species.  349 

 350 

Discussion 351 

 Trait-based models of phytoplankton productivity promise to deliver robust 352 

projections of phytoplankton community dynamics under future climate scenarios. 353 

Phytoplankton traits are estimated in the lab one species at a time but are commonly 354 

aggregated into functional types for ocean biogeochemical models (Anderson 2005, Le 355 

Quéré et al. 2005, Litchman et al. 2006). There are several challenges that arise in the 356 
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estimates of phytoplankton traits for trait-based models. Most species in diverse 357 

communities have not been systematically studied in the lab. Trait values vary across 358 

species, even within functional types, and it is not clear how to produce an average trait 359 

value for modeling functional types. In addition, there is considerable phenotypic plasticity 360 

in traits. Furthermore, grazing rates, viral and parasitic loss rates, sinking rates and biotic 361 

interactions, such as allelopathy or mutualisms, can be complex and highly variable from 362 

species to species. It is difficult to get good estimates of loss terms, such as grazing rate and 363 

viral lysis, that are inherently species specific and patchy in time and space, and we are just 364 

starting to learn about the consequences of the many, complex biotic interactions between 365 

phytoplankton and their microbial communities (Sher et al. 2011, Amin et al. 2015). It may 366 

be possible to overcome some of these myriad challenges using phytoplankton traits 367 

estimated directly from field data or by combining lab-based traits with niches estimated 368 

from the field (Edwards 2016). Here we extract functional-type and species-level 369 

phytoplankton traits from time-series data from a well-studied coastal temperate 370 

phytoplankton community in the Western English Channel (Harris 2010, Widdicombe et al. 371 

2010). While some of the traits estimated here are consistent with laboratory estimates of 372 

similar traits on single species in the lab, many are not, indicating more work is needed to 373 

understand how phytoplankton respond in natural communities. 374 

Our estimates of maximum net growth rate for the phytoplankton functional types 375 

range from 0.4 to 1.5 week-1 (a doubling time of 3.2 to 12 days) and for 10 individual 376 

diatom species from 0.99 to 1.57 week-1 (a doubling time of 6.9 to 11 days).  Our growth 377 

rate estimates are considerably lower than lab-based estimates of growth rate from 378 

unialgal cultures and in situ field estimates of growth rate of individual species (grazers 379 

excluded) that can double more than once a day (Furnas 1990, 1991, Raven et al. 2005).  380 

Maximum in situ growth rates for three of our ten diatom species have been estimated from 381 

daily counts during April in the Irish Sea: Pseudo-nitzchia sp., 0.24 d–1; Guinardia delicatula, 382 

0.18 d–1; Lauderia annulata 1.42 d–1. These rates range from approximately the same to up 383 

to 25 times our estimated maximum net growth rates (McKinney et al. 1997).  Weekly 384 

counts, used in our study, are likely to lead to smaller maximum net growth rates than daily 385 

counts because the coupling between growth and loss processes will be tighter when 386 

averaged over a week instead of a day. We expect our estimate of maximum growth rate to 387 
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be lower than traditional estimates of individual species growth rates in the lab and field 388 

because our growth rate estimates include linear loss terms due to grazing, viral and 389 

parasitic loss and are therefore similar to a net phytoplankton community growth rate.  390 

Our values for net growth rate are consistent with satellite-based estimates of monthly 391 

median phytoplankton growth rates in temperate regions with strong seasonal blooms, 392 

0.35 to 4.2 week–1 (Westberry et al. 2008).  Microzooplankton grazing at Station L4 and 393 

elsewhere has been estimated to account for about two-thirds of phytoplankton growth 394 

(Fileman et al. 2002, Calbet & Landry 2004, Chen et al. 2009, Bernard et al. 2012).   Given 395 

our estimates of maximum growth rates tend to be more than an order of magnitude lower 396 

than estimates of growth rate from lab studies, this suggests loss rates due to grazing and 397 

parasitoid and viral attack may be higher than often assumed.   398 

It would be plausible for there to be no relationship between our field based 399 

estimates of maximum growth rates across the functional types even if there are 400 

differences in maximum net growth rate since the grazing and other linear loss terms 401 

represent such a large fraction of maximum net growth rate. We find the rank order in our 402 

estimates of net growth rates for the functional types (diatoms > dinoflagellates > 403 

phytoflagellates > coccolithophorids) are generally consistent with growth rates reported 404 

from laboratory culture work and field observations (Furnas 1991, Cermeño et al. 2005, 405 

Raven et al. 2005, Laws 2013). In the Western English Channel we find diatoms have the 406 

largest maximum net growth rate, which is roughly double that of coccolithophorids and 407 

phytoflagellates (Fig. 2a). These results indicate that lab-based maximum growth rates 408 

combined with a constant loss rate used by many models may be a reasonable proxy for net 409 

growth rates in natural communities.  410 

The effect of temperature on phytoplankton species growth rates is commonly 411 

described using the Q10 approximation, which is the multiplicative effect of a 10°C change 412 

in temperature on growth rate. This value is typically about 2, ranging from 1.88 to 2.3 for 413 

phytoplankton (Eppley 1972, Bissinger et al. 2008). The range of temperatures at Station 414 

L4 (about 8-18°C) is narrow compared to the width of many phytoplankton temperature 415 

niches (Irwin et al. 2012, Boyd et al. 2013) so we used a linear model to describe the effect 416 

of temperature on growth rate (see Montagnes et al. 2003 for additional rationale for using 417 

a linear model). The temperature sensitivity of the functional types, β, is about 0.11 week–1 418 
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°C–1 for dinoflagellates, 0.06 week–1 °C–1 for coccolithophorids and 0.05 week–1 °C–1 for 419 

diatoms, meaning that growth rate would increase from roughly 1 week–1 to 1.7 week–1 for 420 

dinoflagellates, from 1 week–1 to 1.4 week–1 for coccolithophorids, and from 1 week–1 to 1.3 421 

week–1 for diatoms with an increase in temperature of 6°C (half the annual amplitude in 422 

temperature) starting below their temperature optimum (Fig. 2c). Analysis of the change in 423 

maximum growth rate with temperature from unialgal lab cultures (Montagnes et al. 2003) 424 

found a slope 0.11 to 0.54 week-1 °C-1 for dinoflagellates, which is comparable to the 425 

posterior means (0.11 week-1 °C-1) found in this study (Fig. 2c), and 0.084 to 0.97 week-1 °C-426 

1 for diatoms which is higher than the posterior mean (0.055 week-1 °C-1) found in this 427 

study. For phytoflagellates our temperature trait β is 0.017 week-1 °C-1 which is close to 428 

zero and the credible interval is narrow and close to 0, so we conclude that temperature 429 

has essentially no effect on the growth rate of this functional type at this site. Possible 430 

interpretations for this result are that the phytoflagellates have broad temperature optima 431 

for growth rate or the functional type is composed of many species with specialized 432 

optimal growth temperatures spread across the range of observed temperatures (Eppley 433 

1972, Boyd et al. 2013). This does not appear to be the case for dinoflagellates and 434 

coccolithophorids; even if there is species turnover during the year, there is still a strong 435 

imprint of temperature on the growth rate of the functional type as a whole. An alternative 436 

explanation is that an increase in water column stability favors an increase in dinoflagellate 437 

and coccolithophorid biomass accumulation (Margalef 1978, 1997). The optimal 438 

temperature for growth at the functional type level varies as expected with diatoms and 439 

phytoflagellates having lower optimal temperatures than dinoflagellates and 440 

coccolithophorids, which bloom later in the season. Since temperature is correlated with 441 

stability and we don’t have an independent measure of stability, our model is unable to 442 

distinguish between the direct effects of temperature and the effect of water column 443 

stability on the growth rate of phytoplankton. 444 

Temperature optima for individual diatom species were not identified within the 445 

range of observed temperatures (not shown); we interpreted these results as consistent 446 

with wide temperature response curves, relative to the narrow temperature range at 447 

Station L4, for each species (Boyd et al. 2013). The estimates of the strength of the 448 

temperature effect for individual diatom species (βS, Fig. 3b) was roughly twice as high as 449 
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the effect on the diatom functional type. Averaging responses over many species in a 450 

functional type could lead to weaker effects of temperature change as contrasting effects of 451 

temperature on individual species partially cancel each other out.  452 

Light and nutrient limitation of net growth rate is determined by Michaelis-Menten 453 

half-saturation trait values, kN and kE. Three sources of inorganic nitrogen: nitrate, nitrite, 454 

and ammonium are considered in our estimate of kN for inorganic nitrogen. As a result our 455 

estimate of kN at the functional type level is largely determined by the inorganic nitrogen 456 

species with the smallest half-saturation constant. Half-saturation constants for nitrogen 457 

for phytoplankton species can vary from 0.08 to 8.4 µmol L–1 in the lab (Litchman et al. 458 

2006). Our half-saturation constants for individual diatom species, many with large cell 459 

size, ranged from 1.2-5 µmol L–1, which is comfortably within this range. Our values for 460 

functional types range from about 0.02 to 0.22 µmol L–1, and are either on the lower end or 461 

smaller than typical literature values for unialgal cultures. Diatoms and dinoflagellates as 462 

functional types have kN approximately a factor of ten smaller than many lab-based 463 

literature estimates. The half-saturation constants for inorganic nitrogen for the 464 

phytoplankton functional types at the site are also low relative to all but the lowest 465 

nitrogen concentrations observed in seawater at this site (ranging from 0.1-16 µmol L–1, 466 

only 10% of observations are less than 0.20 µmol L–1), indicating that nitrogen limitation is 467 

only a significant factor affecting growth rates of functional types, particularly diatoms and 468 

dinoflagellates, in the warmest part of the summer. One reason kN may be lower in the field 469 

relative to laboratory studies is that organic nitrogen may be an important source of 470 

nitrogen for some species, particularly the dinoflagellates and phytoflagellates, but also 471 

some diatoms such as Pseudo-nitzschia delicatissima (Loureiro et al. 2009). If organic 472 

sources are important for these groups, for example following the crash of a diatom bloom 473 

when inorganic nitrogen concentrations are low, estimated kN may be artificially low since 474 

organic sources were not included in the model. Alternatively, since nitrogen is taken up 475 

rapidly when available, bulk estimates of reactive nitrogen concentration sampled weekly 476 

may be relatively uninformative at physiological scales (Laws 2013). The phytoflagellates 477 

have the lowest kN of approximately 0.02 µmol L–1, which is less than half the value for 478 

diatoms and roughly 10% of the value of coccolithophorids (Fig. 2d). The phytoflagellate 479 

category is taxonomically diverse, but over half the biomass is found in unidentified cells 480 
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smaller than 5 µm in diameter. The resulting high surface area to volume ratio is consistent 481 

with very low kN (Fiksen et al. 2013). The most significant feature of our results is that the 482 

phytoplankton dynamics at Station L4 is consistent with very low kN compared to values 483 

estimated from laboratory cultures (Litchman et al. 2007). The kN at Station L4 are 5-10 484 

fold smaller than half-saturation constants for nitrate often employed in ecosystem models 485 

(Gregg et al. 2003, Merico et al. 2004). The intermediate complexity marine ecosystem 486 

model constructed by Moore et al (2002) is an exception; this model uses a very low kN for 487 

ammonium of 0.004 µmol L–1 for small cells, much lower than our values for Station L4 488 

(Moore et al. 2002). Generally kN for ammonium are smaller than values for nitrate 489 

(Litchman et al. 2007; Merico et al. 2004). 490 

Light limitation is frequently parameterized by a half-saturation coefficient, kE, or 491 

the irradiance at which light saturates growth, Ek. For comparison between the two, we 492 

divide Ek by 2 to roughly approximate kE. In natural populations in coastal regions, Ek 493 

varies from 40-500 µmol m–2 s–1 (Kirk 2010), corresponding to kE of about 2-22 mol m–2 d–494 

1.  Estimates of kE in unialgal cultures range from 3.5-7.8 mol m–2 d–1 (Litchman et al. 2006), 495 

and varies with steady state irradiance (Gregg et al. 2003, Kirk 2010). At Station L4, our 496 

values of kE range from 8 to 20 mol m–2 d–1, but these are based on sea-surface irradiance 497 

and thus are larger than they would be based on average in situ irradiances. Individual 498 

diatom species have kE ranging from 6-14 mol m–2 d–1, closer to the values for unialgal 499 

cultures. These results suggest that irradiance at Station L4 is limiting for diatoms, 500 

dinoflagellates and coccolithophorids during much of the year, since sea-surface PAR 501 

ranges from 10-50 mol m–2 d–1 and only exceeds Ek ≅ 2kE ≅ 40 mol m–2 d–1 for these groups 502 

during short periods in the summer. By contrast, phytoflagellates have kE near the 503 

minimum levels of PAR and so they experience saturating irradiance for most of the year. 504 

One possible hypothesis is that their small size confers a low pigment package effect, 505 

meaning they have high light absorption per unit of pigment, giving them an advantage 506 

over functional types with larger cells under low light conditions (Finkel & Irwin 2000, 507 

Finkel 2001, Finkel et al. 2004). Furthermore, if some of the phytoflagellates use alternative 508 

energy sources, they may require less chlorophyll and be less sensitive to changes 509 

irradiance. While some dinoflagellates are known to be heterotrophic and mixotrophic 510 

(Stoecker 1999), unlike phytoflagellates their growth rate is strongly affected by low 511 
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temperatures in winter, reducing their growth rate in winter relative to phytoflagellates 512 

(Fig. 1).  Phytoflagellates appear to be able to acclimate to very low light, giving them a 513 

competitive advantage relative to the other functional types, especially in winter.  514 

Many studies of zooplankton grazing focus on the linear grazing rate (Landry & 515 

Hassett 1982, Calbet & Landry 2004, Zheng et al. 2015), which in our model is combined 516 

with gross phytoplankton growth rate to obtain the maximum net growth rate trait, µ, 517 

which is a constant for each phytoplankton functional type. More complex formulations of 518 

zooplankton grazing rates permit diel and seasonal variation in grazing rates and non-519 

linear grazing rates (Tsai et al. 2005) or describe prey switching or selectivity by grazers 520 

(Gentleman et al. 2003, Vallina et al. 2014), but we do not consider these mechanisms. Our 521 

model incorporates density-dependent loss terms to describe consumption of 522 

phytoplankton by grazers along with other loss processes. All four functional types exhibit 523 

strong density-dependent loss. Assuming the loss term is primarily attributable to grazing, 524 

diatoms and phytoflagellates are primarily grazed by specialists (α < 0, Fig. 2) and 525 

unaffected by generalist grazers (ϕ ≅ 0) while dinoflagellates and coccolithophorids were 526 

roughly equally affected by specialist generalist grazers (ϕ ≅ α). The difference between 527 

specialist and generalist density-dependent losses is evidence of strong niche 528 

differentiation for diatoms and phytoflagellates. The results at the species level are more 529 

variable. Six of our ten diatom species exhibit positive density-dependent effects (ϕ S > 0, 530 

Fig. 3c) with increased biomass of all other diatoms, which could be an indication that these 531 

species experience less grazing pressure when the biomass of other diatoms is high (“kill 532 

the winner”) (Vallina et al 2014). Two species, Guinardia delicatula and Pseudo-nitzschia 533 

seriata, have positive density-dependent effects resulting from their own biomass (αS > 0), 534 

indicating that increases in their biomass can increase their own growth rates. Many 535 

strains of Pseudo-nitzschia have been shown to produce the neurotoxin domoic acid (Bates 536 

et al. 1998, Fehling et al. 2004), suggesting this positive density-dependence may be a 537 

result of allelopathy, although G. delicatula does not produce toxins and Pseudo-nitzschia 538 

delicatissima has αS = 0. Finally, three species have negative density dependence arising 539 

from their own biomass (αS < 0). Nitzschia closterium is known to produce mucus that may 540 

increase its export at high densities, which is consistent with this result (Najdek et al. 541 

2005). 542 
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Our analysis of ten diatom species demonstrates the potential and challenges of this 543 

approach for determining trait values and modeling dynamics of individual species. These 544 

species were the most frequently observed in the population, but account for only 11% of 545 

the total biomass, on average. Species with fewer observations are less likely to yield 546 

informative estimates of trait values due to a lack of data, but account for the vast majority 547 

of the biomass. Since our ten species sample is a minority component of the diatom 548 

community and represents species present much of the year in contrast to species present 549 

for only a few weeks at a time, there is no reason to expect the trait values of these species 550 

to be representative of the functional type as a whole. In fact, we observed systematic 551 

differences between trait values for these species and the diatom functional type: 552 

maximum growth rate is lower and kN is higher for the all the species analyzed relative to 553 

the functional type. Even if we had a random sample of species with trait values 554 

representative of the full distribution, determining functional-type level trait values by 555 

averaging over species with different traits and changing contributions to the total 556 

population can lead to errors due to Simpson’s paradox (Chuang et al. 2009, Williams & 557 

Hastings 2011). The uncertainties across the diatom species are large enough to suggest 558 

that the trait values may be largely indistinguishable across many species (Fig. 3).  An 559 

independent analysis showed that diatoms species at Station L4 exhibit neutral dynamics 560 

within the diatom functional type most of the time, indicating that predicting biomass 561 

dynamics of individual species may be much harder than predicting the dynamics of the 562 

aggregated biomass of a functional type (Mutshinda et al. 2016). While it is appealing to 563 

estimate trait values for functional types from knowledge of individual species, it may be 564 

more prudent to deemphasize species-level detail and use realized traits estimated from 565 

biomass dynamics aggregated to the functional-type level. 566 

 567 

Conclusions 568 

This study enables a comparative analysis of trait values used in biogeochemical 569 

models of phytoplankton communities and the trait values estimated from lab studies on 570 

individual phytoplankton. The realized traits we quantified could be different from those 571 

estimated in the lab because they are functional-type level aggregates and include factors 572 

such as phenotypic plasticity and biotic interactions that may vary across species and 573 
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communities. At Station L4 in the Western English Channel, diatoms have the highest 574 

maximum net growth rates, low half-saturation constant for nitrogen, a low temperature 575 

optimum and low temperature sensitivity, and high specialist density-dependent loss rates. 576 

By contrast, the dinoflagellates have intermediate maximum net growth rates, high 577 

temperature optima and sensitivity. Coccolithophorids have the lowest maximum net 578 

growth rate, high temperature optimum and intermediate temperature sensitivity, high 579 

half-saturation constants for nitrogen and light, and like the dinoflagellates show similar 580 

rates of specialist and generalist density-dependent losses. The phytoflagellates have low 581 

maximum net growth rate, low optimum temperatures and sensitivities, low half-582 

saturation constants, and intermediate levels of specialist density-dependent losses. The 583 

relative differences in maximum net growth rate, specifically the relatively high rates for 584 

diatoms, are consistent with differences estimated in the lab and the field, but the absolute 585 

magnitude of the rates are considerably lower because our maximum growth rates include 586 

linear loss terms. A comparison of our results with traits estimated in the lab and used in 587 

models yields a few insights. Grazing and other linear loss rates, as reflected in a reduction 588 

of the gross growth rate, appear be even more important than usually appreciated. We see 589 

evidence of complex biotic interactions that are difficult to assess in the lab: diatoms and 590 

phytoflagellates are more susceptible to specialist loss rates, perhaps indicating specialist 591 

grazers or viruses. At the species level, there appears to be evidence of species interactions 592 

increasing the net growth rate of individual diatom species. The half-saturation constants 593 

for nitrogen are considerably lower than typical lab estimates, consistent with the use of a 594 

wide range of reactive nitrogen sources and widespread mixotrophy. There is considerable 595 

variation in our estimates of the trait values within phytoplankton functional types, which 596 

could be due to real physiological changes arising from acclimation to environmental 597 

conditions over time, variation across species within a functional type, or a consequence of 598 

insufficient data. Time-series of field data combined with our analysis gives us insight into 599 

the mechanisms affecting the dynamics of species and whole functional types in natural 600 

populations that may improve our ability to scale-up results from species-level studies in 601 

the lab to community dynamics in the ocean. 602 

 603 

 604 
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 614 
Figure 1.  615 

Observed (black line) and predicted (shaded region) log10 carbon biomass (mg C m–3) of 616 

each functional type (diatoms, dinoflagellates, coccolithophorids, and phytoflagellates) at 617 

Station L4. The prediction region is the 95% credible range of biomass from the functional 618 

type model. 619 

620 
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Figure 1. 621 
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 625 

Figure 2. 626 

Posterior distributions of traits governing growth rate at the functional type level. (a) 627 

Maximum net growth rate, µ (week–1), (b) the optimal temperature θ (°C), (c) temperature 628 

sensitivity, β (week–1 °C–1), (d) the half-saturation constants for nitrogen, kN (µmol L-1), (e) 629 

the half-saturation constants for irradiance, kE (mol m–2 d–1), and (f) density-dependent 630 

effects on the growth rate of each functional type attributed to their own biomass (α, solid 631 

circle) and to the total biomass of the other functional types in the community (ϕ, open 632 

circle). Box plots show median (thick line), the interquartile range (box) and the full range 633 

of the data or 1.5 times the interquartile range, whichever is smaller (whiskers). In panels 634 

(c) and (f) error bars indicate 95% credible intervals on the posterior means and are used 635 

because posterior distribution are approximately normal. In (f), the horizontal dashed line 636 

indicates no density-dependence. The vertical scale in (d) is logarithmic to facilitate the 637 

display of the wide range of values. 638 

639 
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Figure 2. 640 
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Figure 3. 643 

Species-level trait values for ten diatom species. Species are arranged in order of the 644 

number of weeks they are present in the time-series from Nitzschia closterium (93% of 645 

weeks) to Lauderia annulata (48%). (a) Maximum net growth rate, µS (week–1), (b) 646 

temperature sensitivity, βS (week–1 °C–1), (c) the half-saturation constants for nitrogen, kNS 647 

(µmol L-1), (d) the half-saturation constants for irradiance, kES (mol m–2 d–1), and (e) 648 

density-dependent effects on the growth rate of each functional type attributed to their 649 

own biomass (αS, solid circle) and to the total biomass of the other functional types in the 650 

community (ϕS, open circle). Box plots show median (thick line), the interquartile range 651 

(box) and the full range of the data or 1.5 times the interquartile range, whichever is 652 

smaller (whiskers). In panels (b) and (e) error bars indicate 95% credible intervals on the 653 

posterior means and are used because posterior distribution are approximately normal. In 654 

(e), the horizontal dashed line indicates no density-dependence. The vertical scale in (c) is 655 

logarithmic to facilitate the display of the wide range of values. 656 

657 
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Table 1. 661 

Key symbols for data and traits in the models. Traits for diatom species (as opposed to 662 

functional types) have a superscript S added. 663 

 664 

Symbol Units Interpretation 

Yi , yi  mg C m–3 Biomass, log biomass of functional types or species in week i 

Ti °C Temperature in week i 

Ni mg N m–3 Total inorganic N in week i 

PARi mol m–2 d–1 Sea-surface irradiance in week i 

µ, µS week–1 Maximum net growth rate for a functional type, species 

r, rS week–1 Realized net growth rate for a functional type, species 

kN, kNS mg N m–3 Half-saturation constant for growth as a function of N 

concentration 

kE, kES mol m–2 d–1 Half-saturation constant for growth as a function of 

irradiance 

β, βS  week–1 °C–1 Magnitude of linear increase in net growth rate with 

temperature, temperature sensitivity 

θ, θS °C Temperature with maximum growth rate 

α, αS  Density dependent loss coefficient within functional type, 

diatom species 

ϕ, ϕS  Density dependent loss coefficient due to other functional 

types, other diatom species 

 665 

 666 

667 
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