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Abstract. Simultaneous air–sea fluxes and concentration
differences of dimethylsulfide (DMS) and carbon dioxide
(CO2) were measured during a summertime North Atlantic
cruise in 2011. This data set reveals significant differences
between the gas transfer velocities of these two gases (1kw)

over a range of wind speeds up to 21 m s−1. These differences
occur at and above the approximate wind speed threshold
when waves begin breaking. Whitecap fraction (a proxy for
bubbles) was also measured and has a positive relationship
with 1kw, consistent with enhanced bubble-mediated trans-
fer of the less soluble CO2 relative to that of the more sol-
uble DMS. However, the correlation of 1kw with whitecap
fraction is no stronger than with wind speed. Models used
to estimate bubble-mediated transfer from in situ whitecap
fraction underpredict the observations, particularly at inter-
mediate wind speeds. Examining the differences between gas
transfer velocities of gases with different solubilities is a use-
ful way to detect the impact of bubble-mediated exchange.
More simultaneous gas transfer measurements of different
solubility gases across a wide range of oceanic conditions
are needed to understand the factors controlling the magni-
tude and scaling of bubble-mediated gas exchange.

1 Introduction

Air–sea exchange is a significant process for many com-
pounds that have biogeochemical and climatic importance.
Approximately 25 % of the carbon dioxide (CO2) released
into the atmosphere by anthropogenic activities has been
taken up by the world oceans, which has tempered its cli-
mate forcing while leading to ocean acidification (Le Quéré
et al., 2015). The biogenic gas dimethylsulfide (DMS) is a
major contributor to the mass of marine atmospheric aerosol
(Virkkula et al., 2006). Volatile organic compounds (VOCs)
such as isoprene, acetone and acetaldehyde alter the oxidis-
ing capacity of the troposphere (Carpenter et al., 2012). The
solubility differences between these VOCs mean that their
exchange is controlled to differing degrees by processes on
the water and air side of the air–sea interface (Yang et al.,
2014). Many of the factors influencing air–sea gas exchange
will be altered by future changes in climate, ocean circula-
tion and biology. Earth system models and air quality mod-
els require more accurate understanding of the processes that
influence air–sea gas transfer.

Air–sea gas exchange is typically parameterised as a func-
tion of the ocean–atmosphere bulk concentration difference
(1C) and the physical mixing induced by wind stress at the
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interface (Liss and Slater, 1974). The air–sea flux is typically
described using the expression

Flux=K(Cw−αCa), (1)

where Cw and Ca are the trace gas bulk concentration on ei-
ther side of the interface, α is the dimensionless water/air
solubility of the gas in seawater and K is the gas transfer ve-
locity. The physics of gas transfer are implicitly represented
by the gas transfer velocity, which is commonly expressed
in water-side units of velocity (cm h−1) and parameterised
as a function of wind speed (U10) and Schmidt number (Sc).
The simplicity of Eq. (1) belies the complexity of the pro-
cesses involved in air–sea gas transfer. These processes in-
clude diffusion, surface renewal and bubble-mediated trans-
port. In turn, turbulence can be generated by wind stress,
wave-induced mixing, buoyancy, currents and wave break-
ing. A variety of theoretical, laboratory and field approaches
have been used to study the processes that control air–sea
transfer, but we do not yet have a firm understanding of their
relative importance under a range of atmospheric and oceanic
conditions.

The gas-transfer–wind-speed relationships for gases of
different solubility may be affected by breaking waves and
bubbles (Keeling, 1993; Woolf, 1993, 1997). Gas invasion
and evasion via bubbles (kbub) is sensitive to the void frac-
tion (ratio of air volume to total volume) of the bubble plume
as well as the bubble size distribution. Bubble injection depth
and cleanliness of the surface (influenced by surfactants) af-
fect bubble rise velocity and residence time. Bubble resi-
dence time determines the time available for equilibration
to occur while bubble volume, pressure and gas diffusivity
(Sc) govern the time needed for a bubble to equilibrate. The
magnitude of kbub is expected to be greater for sparingly
soluble gases (e.g. CO2, dimensionless solubility ∼ 1) than
for more soluble gases such as DMS (dimensionless solubil-
ity ∼ 15), particularly when bubbles are fully equilibrated.
Bubble-mediated gas transfer has been studied in the labora-
tory (Asher et al., 1996; Rhee et al., 2007) and using models
(e.g. Woolf, 2005; Woolf et al., 2007; Fairall et al., 2011;
Goddijn-Murphy et al., 2016).

Deliberate, dual-tracer techniques have estimated gas
transfer by measuring the evasion of a pair of sparingly solu-
ble gases with different diffusivity (3He and SF6, dimension-
less solubility ≤ 0.01). These studies observed a non-linear
wind speed dependence of the gas transfer velocity, in qual-
itative agreement with earlier studies in wind–wave tanks
(e.g. Wanninkhof et al., 1985; Liss and Merlivat, 1986; Wat-
son et al., 1991). Direct, shipboard measurements of water-
side gas transfer have also been made by eddy covariance
(e.g. McGillis et al., 2001; Huebert et al., 2004; Marandino
et al., 2007; Miller et al., 2010; Bell et al., 2013). These
measurements typically show DMS gas transfer velocities
that are lower and exhibit more linear wind speed depen-
dence than the CO2 transfer velocity–wind speed relation-
ship inferred from dual-tracer studies (e.g. Yang et al., 2011;

Goddijn-Murphy et al., 2012; Bell et al., 2015). It has been
suggested that the difference between the open-ocean gas
transfer velocities of CO2 and DMS is due to the reduced im-
portance of bubble-mediated exchange for DMS (Blomquist
et al., 2006; Fairall et al., 2011; Goddijn-Murphy et al.,
2016).

Only one set of concurrent CO2 and DMS gas transfer ve-
locity measurements have been published to date (Miller et
al., 2009). In that study, no data were collected for winds
greater than 10 m s−1 and no statistically significant differ-
ence was observed in the CO2 and DMS gas transfer–wind
speed relationships after normalising both gases to a com-
mon diffusivity. This study presents a more extensive set of
CO2 and DMS gas transfer velocities that were measured si-
multaneously aboard the R/V Knorr in the 2011 summertime
North Atlantic in both oligotrophic and highly productive
waters. The DMS gas transfer velocities are discussed sep-
arately in detail by Bell et al. (2013). Here we focus specif-
ically on what can be learned about gas transfer from the
differences in behaviour of two different solubility gases at
intermediate and high wind speeds.

2 Methods

2.1 Seawater, atmospheric and flux measurement
systems

The measurement setups for DMS and CO2 concentrations
in air and water and the eddy covariance flux systems have
been discussed in detail elsewhere (Miller et al., 2008; Saltz-
man et al., 2009; Miller et al., 2010; Bell et al., 2013, 2015;
Landwehr et al., 2014; Landwehr et al., 2015). We provide a
summary plus some additional details in the Appendix.

2.2 Gas transfer velocity calculations

In this section we describe the calculation of DMS and CO2
gas transfer velocities from the Knorr_11 cruise data. Mea-
sured gas transfer velocities are transformed into water-side-
only gas transfer velocities in order to remove the influence
of air-side resistance. The relative contribution of air-side re-
sistance to the total resistance is a function of solubility and
thus different for the two gases. Finally, we discuss the most
appropriate approach for comparing the water-side gas trans-
fer velocities, given that the two gases have different molec-
ular diffusivity and solubility.

Total gas transfer velocities (K) are calculated for CO2
and DMS for each 10 min flux interval of the Knorr_11 cruise
using Eq. (1). The temperature-dependent dimensionless sol-
ubilities of CO2 and DMS in seawater are calculated follow-
ing Weiss (1974) and Dacey et al. (1984) respectively. These
gas transfer velocities reflect the result of resistance on both
sides of the interface (Liss and Slater, 1974). The water-side
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contribution to the total resistance is determined as follows:

kw =

[
1
K
−
α

ka

]−1

, (2)

where kw and ka are the air-side and water-side gas transfer
velocities and α is dimensionless water/air solubility. Note
that we use the α reported by Dacey et al. (1984) in these
calculations rather than the Henry law constant (H , units of
atm L mol−1) as there appears to be an error in conversion
between α and H in that study (see Supplement discussion).
CO2 solubility is sufficiently low that air-side resistance is
negligible and the water-side gas transfer is assumed equal
to the total transfer velocity (kCO2 =KCO2). The air-side re-
sistance for DMS needs to be accounted for because it is a
moderately soluble gas (McGillis et al., 2000). Air-side gas
transfer velocities (ka) for DMS were calculated for each
10 min flux interval with the NOAA COAREG 3.1 model, us-
ing sea surface temperature (SST) and horizontal wind speed
measured during the cruise. The NOAA COAREG 3.1 model
(Fairall et al., 2011) is an extension of the COARE bulk pa-
rameterisation for air–sea energy and momentum fluxes to
parameterise gas transfer (Fairall et al., 1996, 2000). The
air-side resistance contributes about 5 % on average to the
total resistance for DMS. NOAA COAREG 3.1 model cal-
culations were carried out using a turbulent/molecular co-
efficient, A= 1.6, and bubble-mediated coefficient, B = 1.8
(Fairall et al., 2011). Knorr_11 measurements of SST, air
temperature, relative humidity, air pressure, downward radi-
ation and wind speed were used as input parameters to the
model. Note that the use of the COAREG 3.1 model intro-
duces a small uncertainty in our estimates of water-side DMS
gas transfer velocity (approximately ±2 % when wind speed
= 20 m s−1).

To facilitate comparison of transfer coefficients for the two
gases across a range of sea surface temperatures, gas trans-
fer velocities are corrected for changes in molecular diffusiv-
ity and viscosity. The correction typically involves the nor-
malisation of water-side gas transfer velocities to a common
Schmidt number (Sc= 660), equivalent to CO2 in seawater
at 20 ◦C:

kX,660 = kX ·

(
660
ScX

)−0.5

, (3)

where subscript X refers to CO2 or DMS (i.e. kDMS,660
and kCO2,660). Temperature-dependent ScCO2 and ScDMS
were obtained using the in situ seawater temperature from
the ship’s bow sensor and parameterisations from Wan-
ninkhof (1992) and Saltzman et al. (1993).

The Sc number normalisation (Eq. 3) is commonly used
across the whole range of wind speeds. In fact, it is only
appropriate at low or moderate winds when interfacial gas
transfer dominates over bubble-mediated gas exchange. If
bubbles are an important component of gas transfer then sol-
ubility also plays a role and normalisation based on Sc alone
may not be sufficient.

To develop a more rigorous comparison of kDMS and kCO2 ,
we normalised the water-side transfer velocities of DMS to
the Schmidt number of CO2 at the in situ sea surface temper-
ature of each 10 min flux interval, as follows:

kDMS,Sc = kDMS ·

(
ScCO2

ScDMS

)−0.5

, (4)

where ScCO2 and ScDMS are the Schmidt numbers of CO2
and DMS at the in situ sea surface temperature. Compared to
normalising both DMS and CO2 to Sc = 660, this approach
has the advantage of correcting only kDMS, with no correc-
tion to kCO2. The Sc correction for DMS should be reason-
ably accurate, assuming that the bubble-mediated transfer for
the more soluble DMS is relatively small.

On the Knorr_11 cruise, the variability in sea surface tem-
perature was small (1σ =±1 ◦C). As a result, there is little
difference in the variability or wind speed dependence of Sc-
corrected kCO2 compared to kCO2 at the in situ temperature
(Fig. 5 vs. Fig. S5 in Supplement). In Sect. 3.4, the relation-
ship between CO2 and DMS gas transfer velocities and wind
speed is examined using kDMS,Sc and kCO2.

2.3 Calculation of kbub,CO2

The flux of a water-side controlled gas is equal to the sum of
the interfacial flux and the bubble-mediated flux. For gases
with significant air–sea disequilibrium these processes are
often considered as parallel transfer velocities, i.e. total trans-
fer velocity kw = kint+ kbub. See Woolf (1997) for a more
complete discussion of bubble-mediated transfer for gases
close to ocean–atmosphere equilibrium. We assume that tur-
bulence and diffusive mixing at the sea surface operate sim-
ilarly upon the interfacial air–sea transfer of CO2 and DMS
(i.e. kint,CO2 = kint,DMS), given appropriate normalisation for
the differences in molecular diffusivity. Observed differences
between kDMS,Sc and kCO2 should therefore be a measure of
the difference between the bubble-mediated contributions to
DMS and CO2 gas transfer:

1kw = kbub,CO2 − kbub,DMS. (5)

Strictly speaking, Eq. (5) should also account for the influ-
ence of bubble overpressure, which alters the gas flux due
to bubbles when the concentration gradient is into the ocean.
The extra pressure on the gas in the bubbles is calculated
following Woolf (1997): 1= (U10/Ui)

2 % where Ui is the
wind speed at which the supersaturation of a particular gas
equals 1 % (49 m s−1 in the case of CO2). A high wind speed
(20 m s−1) gives 1= 0.167 %, which would lead to only a
∼ 2 % enhancement of the CO2 flux when the air–sea con-
centration gradient is 30 ppm (minimum for this study) and
into the ocean. The magnitude of this effect would be larger
for gases less soluble than CO2 but we are able to ignore it
for the purposes of this study.
kbub,CO2 and kbub,DMS are related by the influence of solu-

bility and diffusivity upon bubble-mediated transfer. We pa-
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rameterise this relationship simply as kbub,DMS = f kbub,CO2 .
Substitution into Eq. (5) yields

kbub,CO2 =
1kw

1− f
. (6)

The value of f depends on seawater temperature and the
complex dynamics of bubble formation and cycling (size dis-
tributions, surfactants, etc.). At the mean SST encountered in
this study (9.8 ◦C), the bubble gas transfer models of Woolf
(1997) and Asher (Asher and Wanninkhof, 1998; Asher et
al., 2002) yield values for f of 0.14 and 0.28, respectively
(see Supplement for model equations).

2.4 Sea surface imaging

Whitecap areal fraction was measured using images of the
sea surface recorded with a digital camera (5-megapixel Are-
cont Vision, 16 mm focal length lens) mounted 14.6 m above
the ocean surface at an angle of ∼ 75◦ from the nadir. Image
footprints represent ∼ 7600 m2 of sea surface. Images were
collected at a sample interval of about 1 s and post-processed
for whitecap fraction according to the automated whitecap
extraction algorithm method (Callaghan and White, 2009).
More detail on the methodology, camera exposure settings
and data comparability are provided in the Supplement. Im-
ages were further processed to distinguish whitecap pixels
as either stage A or stage B whitecaps by applying a spatial
separation technique (Scanlon and Ward, 2013). The white-
cap fraction measurements were averaged in the same way
as the gas transfer velocities (i.e. time-averaged mean values
as well as 2 m s−1 wind speed bins).

3 Results

3.1 Cruise location and environmental conditions

This study took place in the summertime North Atlantic (24
June–18 July 2011; DOY 175–199), departing and returning
to Woods Hole, MA. Most of the data were collected north
of 50◦ N, including the occupation of four 24–36 h stations –
ST181, ST184, ST187 and ST191 (Fig. 1). The cruise track
was designed to sample regions with high biological produc-
tivity and phytoplankton blooms, with large air–sea concen-
tration differences for CO2 and DMS. The cruise meteorol-
ogy and physical oceanography is discussed in detail by Bell
et al. (2013). A series of weather systems travelling from
West to East passed over the region during the cruise. Wind
speeds ranged from ∼ 1 to 22 m s−1, with strongest winds
during the frontal passages at stations ST184 and ST191
(Fig. 1b). Atmospheric boundary layer stability was close
to neutral for most of the cruise (|z/L|r < 0.07; 75 % of the
time), with infrequent stable conditions (z/L> 0.05; < 8 % of
the time, Fig. 1a). There was no evidence that the stable peri-
ods affected the flux measurements (Bell et al., 2013). White-

cap areal fraction increased up to a maximum of ∼ 0.06 in
response to high wind speeds (Fig. 1b).

3.2 Whitecaps

Whitecaps were observed during Knorr_11 when wind
speeds exceeded 4.5 m s−1, a typical wind speed thresh-
old for whitecap formation in the open ocean (Callaghan
et al., 2008; Schwendeman and Thomson, 2015). White-
cap areal fraction is a strong, non-linear function of wind
speed (Fig. 2a). The whitecap vs. wind speed relationship
for Knorr_11 is similar in shape to recently published wind-
speed-based whitecap parameterisations (Callaghan et al.,
2008; Schwendeman and Thomson, 2015). At intermedi-
ate wind speeds the Knorr_11 whitecap data are lower than
the parameterisations (Fig. 2a). Total whitecap coverage is
a function of (i) active “stage A whitecaps” (WA) produced
from recent wave breaking and (ii) maturing “stage B white-
caps” (WB) that are decaying foam from previous breakers.
The Stage A whitecap fraction data are highly variable at
∼ 11 m s−1 wind speeds (Fig. 2b), which is driven by the dif-
ference in the wind–wave conditions during Knorr_11 (see
discussion in Supplement).

3.3 Concentrations, fluxes and gas transfer velocities

Seawater pCO2 was consistently lower than the overlying
atmosphere throughout the study region due to biological
uptake (Fig. 3a). As a result, the air–sea concentration dif-
ference (1pCO2) was large and always into the ocean, with
1pCO2 <−45 ppm for more than 80 % of the measurements.
Periods with particularly enhanced 1pCO2 into the ocean
were during the transit between ST181 and ST184 (1pCO2
as large as −120 ppm) and during ST191 (1pCO2 consis-
tently −75 ppm).

Seawater DMS levels were much higher than atmospheric
levels, reflecting the biogenic sources in seawater and the rel-
atively short atmospheric lifetime (∼ 1 day; Kloster et al.,
2006). The largest air–sea DMS concentration differences
(1DMS) of 6–12 ppb were observed during DOY 185–190
(Fig. 4a). The 1DMS and 1pCO2 did not co-vary (Spear-
man ρ = 0.11, n= 918, p < 0.001). This is not surprising be-
cause, although seawater DMS and CO2 signals are both in-
fluenced by biological activity, they are controlled by dif-
ferent processes. Seawater CO2 levels reflect the net result
of community photosynthesis and respiration, while DMS
production is related to metabolic processes that are highly
species-dependent (Stefels et al., 2007).

CO2 fluxes (FCO2) were generally into the ocean, as ex-
pected given the direction of the air–sea concentration dif-
ference (Fig. 3b). The variability in FCO2 observed on this
cruise reflects dependence on both wind speed and 1pCO2.
For example, during DOY182 air-to-sea CO2 fluxes increase
due to a gradual increase in1pCO2 with fairly constant wind
speed. More commonly, 1pCO2 was fairly constant and

Atmos. Chem. Phys., 17, 9019–9033, 2017 www.atmos-chem-phys.net/17/9019/2017/



T. G. Bell et al.: Estimation of bubble-mediated air–sea gas exchange 9023

Figure 1. Time series of 10 min averaged data collected during the Knorr_11 cruise. Dashed black line in panel (a) indicates neutral at-
mospheric stability (z/L= 0). Grey shaded regions represent intervals when the ship occupied stations ST181, ST184, ST187, and ST191.
Measured wave properties (see Bell et al., 2013) are presented in panels (c) and (d): significant wave height Hs (c) and inverse wave age (d).
U10n/Cp ≥ 1 represent younger seas and U10n/Cp < 1 represent older seas.

Figure 2. Semi-log plots of whitecap areal fraction as a function of mean horizontal wind speed at 10 m above the sea surface (U10n)
during the Knorr_11 cruise. 10 min average (grey dots) and 2 h average (red triangles) data are shown on both panels. (a) Total whitecap
area (WT) versus U10n bin-averaged data (open squares, 2 m s−1 bins). The best fit line to Knorr_11 2 h average data (green; log10 (WT)=
−42.19e(−0.95U)

− 6.5e(−0.0886U)) and wind speed parameterisations from the recent literature are shown for reference. (b) Whitecap area
considered to be solely from wave breaking (Stage A whitecaps (WA); see text for definition).

www.atmos-chem-phys.net/17/9019/2017/ Atmos. Chem. Phys., 17, 9019–9033, 2017



9024 T. G. Bell et al.: Estimation of bubble-mediated air–sea gas exchange

Figure 3. Knorr_11 cruise time series of 10 min averaged CO2: (a) air–sea concentration difference (1pCO2), (b) flux (FCO2) and (c) gas
transfer velocity (kCO2; water side only, no Sc correction). Panel (c) also shows kCO2 calculated using the NOAA COARE model (black
line). Note that negative kCO2 data points in (c) were omitted for clarity (see Fig. S6 for full data set). Grey shaded regions represent periods
on station.

variability in FCO2 reflected changes in wind speed. For ex-
ample, from DOY 185 to 187 wind speeds gradually declined
from ∼ 10 to 5 m s−1 with a concurrent decline in FCO2.
DMS eddy covariance fluxes were always out of the ocean.
The 10 min averaged DMS fluxes (FDMS) clearly show the
influence of 1DMS (e.g. DOY 188) and wind speed (e.g.
DOY 184).

Gas transfer velocities of CO2 and DMS from this cruise
exhibit two systematic differences: (i) kDMS values are gen-
erally lower than kCO2 , particularly during episodes of high
wind speed; and (ii) kCO2 is characterised by much larger
scatter than kDMS. We attribute the large scatter in kCO2 to the
greater random uncertainty associated with the eddy covari-
ance measurement of air–sea CO2 fluxes compared to those
of DMS. As shown by Miller et al. (2010), the analytical
approach used in this study (dried air, closed path LI7500)
has sufficient precision to adequately resolve the turbulent
fluctuations in atmospheric CO2 associated with the surface
flux over most of the cruise (1pCO2 <−30 ppm). The scat-
ter in the CO2 flux measurements is more likely due to envi-
ronmental variability resulting from fluctuations in boundary
layer CO2 mixing ratio arising from horizontal and/or ver-
tical transport unrelated to air–sea flux (Edson et al., 2008;

Blomquist et al., 2014). These effects likely have a much
smaller effect on air–sea DMS fluxes, because the air–sea
DMS concentration difference is always much larger than
the mean atmospheric DMS concentration (due to the short
atmospheric lifetime of DMS). For example, a 1pCO2 of
100 ppm at a wind speed of 10 m s−1 will produce turbu-
lent fluctuations that are ∼ 0.02 % of the background CO2
on average. In contrast, a typical seawater DMS concentra-
tion (2.6 nM) at a wind speed of 6 m s−1 generates fluctua-
tions that are 20 % of the background (Table 1; Blomquist et
al., 2012). Thus, FCO2 measurements are highly sensitive to
small fluctuations in background CO2 and the relative uncer-
tainty is expected to be much larger than that for FDMS.

3.4 Comparison of kCO2 and kDMS,Sc

The differences between CO2 and DMS gas transfer veloci-
ties observed in the time series are also evident when the data
are examined as a function of wind speed. From the 10 min
averaged data, it is clear that kCO2 is greater than kDMS and
has a stronger wind speed dependence over most of the wind
speed range (Fig. 5a, b). These broad trends are also easily
seen in longer time-averaged data. Flux and 1C measure-
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Figure 4. Knorr_11 cruise time series of 10 min averaged DMS: (a) air–sea concentration difference (1DMS), (b) flux (FDMS) and (c) gas
transfer velocity normalised to the in situ CO2 Sc number (kDMS,Sc). Panel (c) also shows kDMS,Sc calculated using NOAA COARE model
output (black line). Grey shaded regions represent periods on station.

ments were averaged into 2 h periods (minimum of three flux
intervals per 2 h period), which reduced the scatter in FCO2
while preserving the temporal variability (see Fig. S7). Gas
transfer velocities were then recalculated from the 2 h aver-
aged data. 10 min kCO2 and kDMS,Sc data were also averaged
into 2 m s−1 wind speed bins, with a minimum of five 10 min
periods per bin. The 2 h averaged data and the wind speed
binned data show kCO2 and kDMS,Sc diverging at intermedi-
ate wind speeds, differing by a factor of roughly 2 at 10 m s−1

(Fig. 5c, d).
DMS gas transfer velocities on this cruise exhibit complex

behaviour at intermediate to high wind speeds, as discussed
in Bell et al. (2013). kDMS,Sc increases linearly with wind
speed up to ∼ 11 m s−1 (Fig. 5). Under the sustained high-
wind, high-wave conditions encountered during ST191, the
wind speed dependence of kDMS,Sc was lower than expected,
with a slope roughly half that of the rest of the cruise data.
This effect was not observed at ST184 – for detailed discus-
sion, see Bell et al. (2013). Such coherent spatial-temporal
variation means that wind speed bin averaging of the higher
wind speed kDMS,Sc may mask real variability in the relation-
ship with wind speed. Relationships developed from wind
speed bin-averaged gas transfer data should be interpreted

with caution, especially when it comes to developing gener-
alisable air–sea gas transfer models.

The Knorr_11 kCO2 data also demonstrate a clear wind
speed dependence (Fig. 5). The NOAA COARE model for
CO2 has been tuned to previous eddy covariance flux mea-
surements (McGillis et al., 2001), with bubble-mediated
transfer determining the non-linear relationship with wind
speed (Fairall et al., 2011). There is reasonable agreement
between the COARE model gas transfer velocity predictions
and the Knorr_11 kCO2 data up to ∼ 11 m s−1 wind speed.
Above 11 m s−1, the COARE model overpredicts kCO2 . This
could be interpreted as indicating high wind speed suppres-
sion of gas transfer for CO2 as observed for DMS (as dis-
cussed by Bell et al., 2013). However, it is important to note
that the number of high wind speed (> 15 m s−1) gas transfer
measurements in this study is limited to 9 and 16 h of data
for DMS and CO2 respectively. Much more data are needed
in order to firmly establish the high wind speed behaviour.

The COAREG 3.1 model parameterises interfacial gas
transfer by scaling to Sc and friction velocity and estimates
bubble-mediated gas transfer following Woolf (1997). The
lower solubility of CO2 leads to enhanced gas transfer rel-
ative to that of DMS at high wind speeds where bubble
transport is significant (Fairall et al., 2011). There is good
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Figure 5. Gas transfer velocities plotted against mean horizontal wind speed (U10) from the Knorr_11 cruise: 10 min average data for CO2
(a) and DMS (b). DMS gas transfer velocities are normalised to the in situ CO2 Sc number.Data are averaged into 2 h periods (c) and 2 m s−1

wind speed bins (d). Note that negative kCO2 data in (a) have not been plotted for clarity (see Fig. S8 for full data set). For reference, the
NOAA COAREG3.1 model output for CO2 (magenta line) and DMS (green line) is plotted on all four panels. The COARE model was run
with the turbulent/molecular coefficient, A= 1.6, and the bubble-mediated coefficient, B = 1.8, and used mean Knorr_11 data for the input
parameters.

agreement between the COAREG model gas transfer veloc-
ity predictions and the Knorr_11 kCO2 and kDMS data until
∼ 11 m s−1 wind speed.

Earlier in this paper we introduced the quantity 1kw as an
observational measure of the difference in gas transfer veloc-
ities of CO2 and DMS (Sect. 2.3, Eq. 6). The relationship be-
tween 1kw and wind speed is positive and shows no system-
atic differences related to temporal variability (Fig. 6). Sea
surface temperature (SST) is indicated by symbol size. Some
of the scatter in Fig. 6 could be driven by changes in Sc due
to SST variability. Nearly all of the data in Fig. 6 are from
periods when SST was relatively constant (9.7± 1.1 ◦C).
Many of the kCO2 data with warm seawater (i.e. ST181,
SST > 12 ◦C) were rejected by our quality control criteria
(see Appendix A3). These data were collected when wind

speeds were low, which resulted in small CO2 fluxes with
large variability at low frequencies. Of the periods with SST
> 12 ◦C that passed the quality control criteria, the majority
contributed fewer data within a 2 h averaging period than the
minimum threshold (three 10 min averaged data points).

4 Discussion

The bubble-mediated component of gas transfer is a strong
function of wind speed and breaking waves. Previous esti-
mates of bubble-mediated air–sea gas exchange have used
data from laboratory experiments (Keeling, 1993; Asher et
al., 1996; Woolf, 1997). The differences between gas trans-
fer velocities for DMS and CO2 provide a unique way to
constrain the importance of bubble-mediated transfer under
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Figure 6. Difference (1kw) between 2 h average kCO2 and kDMS,Sc
plotted against U10. Data are coloured by the date of measurement
(Day of Year). Sea surface temperature (SST) is indicated by sym-
bol size (range is 7.1 to 12.5 ◦C). The solid grey line describes the
power law fit to the data (see Eq. 7).

natural conditions. This study shows that 1kw is near zero
(< 4.5 cm h−1) at low wind speeds (U10 ≤ 4.5 m s−1), which
is consistent with the wind speed at which whitecap fraction
becomes significant (WT > 10−5, Fig. 2a). Above 4.5 m s−1,
1kw increases non-linearly, consistent with an increase in
bubble-mediated CO2 transfer associated with wave break-
ing. The relationship between 1kw and wind speed is non-
linear, and a power law wind speed dependence yields a good
fit (R2

= 0.66; Fig. 6):

1kw = 0.177U1.928
10 . (7)

The functional form of this relationship is qualitatively
consistent with those found between U10 and breaking
waves/wave energy dissipation (Melville and Matusov, 2002)
and U10 vs. whitecap areal fraction (e.g. Callaghan et al.,
2008; Schwendeman and Thomson, 2015). Bubble-mediated
gas transfer is the only viable explanation for the magnitude
and wind speed dependence of1kw. The only alternative ex-
planation would require a large systematic bias in the mea-
surement of relative gas transfer velocities of DMS and CO2.
There are no obvious candidates for such biases.

During strong wind/large wave conditions, the Knorr_11
data suggest that bubble-mediated exchange is a dominant
contributor to the total transfer of CO2. For example, when
wind speeds were 11–12 m s−1, 1kw was about 50 % of the
total CO2 gas transfer (kCO2). A significant contribution by
bubbles to the total gas transfer velocity means that bubble-
mediated exchange must be included and adequately param-
eterised by gas transfer models. The Schmidt number (Sc)
normalisation (Eq. 4) assumes that the gas transfer velocity is
purely interfacial. An alternative normalisation (involving Sc
and solubility) is required when bubble-mediated transfer is
significant. Our data suggest that the current Sc normalisation

Figure 7. Knorr_11 1kw data plotted against total whitecap areal
fraction (a) and against Stage A whitecap areal fraction (b). Each
point is a 2 h average of coincident measurements of whitecap frac-
tion and DMS and CO2 gas transfer.

should be applied with caution to gas transfer data for differ-
ent solubility gases at wind speeds greater than 10 m s−1.

If 1kw reflects the difference between the bubble-
mediated contribution to the transfer of CO2 and DMS,
one would expect 1kw to correlate with wave-breaking, and
hence with the areal coverage of whitecaps. Breaking waves
generate plumes of bubbles (Stage A whitecaps, WA), which
then rise to the surface and persist for a short period as
foam (Stage B whitecaps, WB). Almost all whitecap mea-
surements represent the fraction of the sea surface that is cov-
ered by bubble plumes and/or foam – i.e. WT =WA+WB.
The 1kw is positively correlated with both WT (Spearman
ρ = 0.65, n= 43, p < 0.001) and WA (Spearman ρ = 0.74,
n= 32, p < 0.001; Fig. 7a, b). These correlations are approx-
imately the same strength as the correlation between 1kw
and wind speed (Spearman ρ = 0.73, n= 88, p < 0.001). The
functional form of the relationship between 1kw and white-
cap areal extent appears to be linear for WT > 0.005. How-
ever, the Knorr_11 data set is small and quite scattered, par-
ticularly when WT < 0.005. More data are required to fully
test the validity of whitecap areal fraction as a proxy for bub-
bles and bubble-mediated exchange.

Observations of the decaying white cap signal (WB) sug-
gest that the persistence of surface foam is related to both
bubble plume depth (deeper bubble plumes take longer to
degas) and sea surface chemistry (Callaghan et al., 2013). As
measured here, WB is approximately an order of magnitude
larger than WA and thus dominates the WT signal. It is of-
ten assumed that gas exchange takes place in bubble plumes
formed by active wave breaking (i.e. WA), while WB may
vary widely due to surfactant concentration with little or no
impact upon bubble-mediated gas exchange (e.g. Pereira et
al., 2016). In this case, 1kw should be more strongly corre-
lated with WA than WB or WT. The Knorr_11 data do not
suggest that WA is an improvement upon either WT or even
wind speed as a measure of bubble-mediated exchange. This
may be because whitecaps do not fully represent the bub-
bles facilitating gas exchange as these may dissolve before
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Figure 8. Bubble-mediated transfer velocity of CO2 (kbub,CO2) as
a function of wind speed. Individual points are Knorr_11 obser-
vations using solubility and diffusivity scaling from Woolf (1997)
(black squares) and Asher et al. (2002) (red circles). Continuous
lines are model calculations of kbub,CO2 using the Knorr_11 wind
speed versus whitecap areal fraction relationship (see Fig. 2) and
mean SST (Woolf, 1997: black; Asher et al., 2002: red). Model cal-
culations were also performed using the Schwendeman and Thom-
son (2015) wind speed versus whitecap areal fraction relationship
(dashed lines).

they reach the sea surface. Alternatively,WT andWA may be
equally good (or poor) proxies for bubbles because: (i) sur-
factant activity was either insignificant or sufficiently invari-
ant in the study region (despite high biological productivity)
that WB does not confound the relationship between WT and
WA; (ii) WA is no better than WT at representing the volume
of air entrained by breaking waves; and/or (iii) bubbles re-
siding at the surface (i.e. WB) continue to contribute to gas
transfer (Goddijn-Murphy et al., 2016).

As shown earlier, the bubble-mediated contribution to gas
transfer (kbub,CO2) can be obtained from 1kw using infor-
mation from mechanistic bubble gas transfer models (f ; see
Sect. 2.3). The kbub,CO2 data sets derived from the Knorr_11
data using the Asher (Asher and Wanninkhof, 1998; Asher
et al., 2002) and Woolf (1997) models differ by about 15 %
(Fig. 8). The field-based estimates of kbub,CO2 can also be
compared to model-only estimates for the Knorr_11 con-
ditions using the Asher and Woolf models. Both models
are based on total whitecap areal fraction, WT. A non-
linear fit of the Knorr_11 WT and wind speed measure-
ments (WT = 1.9× 10−6U3.36

10n ) was used to drive both mod-
els (Fig. 8). The Asher et al. (2002) model is based on labo-
ratory tipping bucket gas evasion experiments (Asher et al.,
1996) and the model was then adjusted to represent the flux
of CO2 into the ocean (invasion). Woolf (1997) scaled a sin-
gle bubble model to the open ocean based on laboratory ex-
periments.

Both models significantly underestimate kbub,CO2 at wind
speeds below about 11 m s−1. At higher wind speeds, the
Asher et al. (2002) model increases rapidly with wind
speed to agree better with the Knorr_11 data. In contrast,
Woolf (1997) consistently underestimates kbub,CO2 at all
wind speeds. Both kbub,CO2 models depend on the choice
of wind speed versus whitecap parameterisation. Using the
Schwendeman and Thomson (2015) whitecap parameterisa-
tion instead of the Knorr_11 best fit makes some difference
to the model output, but not enough to adequately fit to the
data (Fig. 8). A “dense plume model” was also developed
by Woolf et al. (2007) to take account of the interaction of
a bubble plume with the interstitial water between bubbles.
This model yields estimates of kbub,CO2 that are even lower
than the original Woolf (1997) “single bubble model” (data
not shown).

It is likely that the Knorr_11 cruise data will be com-
pared with estimates of kbub,CO2 derived from future field
campaigns, which will be conducted under different envi-
ronmental conditions. Our kbub,CO2 data are at in situ sea-
water temperature (∼ 10 ◦C) and thus in situ CO2 solubil-
ity (α = 1.03) and diffusivity (Sc= 1150). We use the Asher
et al. (2002) and Woolf (1997) bubble models to make esti-
mates of kbub,CO2 normalised to a standard seawater temper-
ature of 20 ◦C (kbub,CO2,20 ◦C, where α = 0.78 and Sc= 666).
The 2 h averaged Knorr_11 cruise data, including estimates
of 1kw,kbub,CO2 and kbub,CO2,20 ◦C, are provided in Supple-
mental Table S1.

The approach used in this study to estimate 1kw and
kbub,CO2 from the Knorr_11 field data neglects the effect of
sea surface skin temperature and CO2 chemical enhance-
ment. Skin temperature is typically only a few tenths of a
degree less than bulk seawater under the conditions encoun-
tered in this study (Fairall et al., 1996). The impact upon kCO2

due to skin temperature effects on CO2 solubility and carbon-
ate speciation is probably of the order of 3 % (Woolf et al.,
2016). There is a chemical enhancement of the CO2 flux due
to ionisation at the sea surface (Hoover and Berkshire, 1969).
The effect on kCO2 has been estimated to be up to about 8 %
at a wind speed of 4–6 m s−1 (Wanninkhof and Knox, 1996),
which amounts to a maximum impact of a few cm h−1. By
neglecting these effects we have slightly overestimated 1kw
and kbub,CO2 , but the magnitude of these corrections would
be small relative to the environmental scatter or measurement
uncertainty.

5 Conclusions

The Knorr_11 concurrent measurements of DMS and CO2
gas transfer velocities show significant differences in gas
transfer between the two gases at intermediate–high wind
speeds. These data indicate that (i) bubble-mediated gas
transfer becomes significant for CO2 at or above the thresh-
old for wave-breaking and (ii) the wind speed dependence is
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non-linear, with a similar functional form to proposed rela-
tionships predicting whitecap areal extent from wind speed.
However, existing models of bubble-mediated gas transfer
using the Knorr_11 in situ observations of whitecap fraction
significantly underestimate the importance of this process.

There are a number of assumptions behind model esti-
mates of bubble-mediated gas exchange (Goddijn-Murphy
et al., 2016). Model bias can be crudely split into (i) un-
certainties in the scaling of whitecap fraction to the bubble
population (e.g. using Cipriano and Blanchard, 1981) and
(ii) the relationship between gas exchange and bubble proper-
ties, which are predicted as a function of air entrainment into
the surface ocean by a breaking wave, bubble injection depth,
size distribution and mobility through the water (a function
of surface cleanliness and surfactants). The underestimation
of bubble-mediated CO2 gas transfer by both models is par-
ticularly apparent at low–intermediate wind speeds and low
whitecap fraction. This could indicate either that bubble pro-
duction during microscale breaking is an important process
for gas transfer or that the relationship between whitecap
fraction and bubble population is poorly constrained.

In summary, the approach of using simultaneous measure-
ments of multiple gases with different solubility appears to be
a viable way to constrain the magnitude of bubble-mediated
gas transfer. Analysis of additional sparingly soluble gases,
such as methane or oxygenated hydrocarbons, would further
strengthen this approach. A much larger data set, under a
wider range of oceanographic conditions, is certainly needed.
In particular, it would be useful to examine DMS and CO2
gas transfer velocities in ocean regions with different tem-
peratures, where the solubility of each gas is significantly
different from this study.

Data availability. Relevant data for this paper can be found in Ta-
ble S1 of the Supplement.
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Appendix A

A1 Seawater CO2 and DMS measurements

Seawater CO2 and DMS were monitored in the supply of
seawater pumped continuously through the ship from an in-
take on the bow located 6 m below the sea surface. CO2 was
equilibrated with air in a recirculating showerhead type sys-
tem. Alternate air- and water-side pCO2 were each measured
for 5 min by the same infrared gas analyser (IRGA). Sea-
water DMS was equilibrated with DMS-free air in a tubu-
lar porous membrane equilibrator, operated in a single-pass,
counterflow mode. DMS was measured at 1 Hz using chem-
ical ionisation mass spectrometry and bin-averaged at 1 min
intervals (UCI miniCIMS; Saltzman et al., 2009). DMS was
calibrated by continuously pumping an internal standard of
tri-deuterated, DMS (d3-DMS) into the seawater flow just
before the equilibrator. Details of the methods and instru-
mentation used for equilibration and detection of seawater
DMS are described in Saltzman et al. (2009).

A2 Mast-mounted instrumentation and data
acquisition

The eddy covariance system was mounted 13.6 m above the
sea surface on the bow mast. Platform angular rates and
accelerations were measured by two Systron Donner Mo-
tion Pak II (MPII) units. Three-dimensional winds and sonic
temperature were measured by two Campbell CSAT3 sonic
anemometers. Air sampling inlets for DMS and CO2 were
located at the same height as the anemometers and within
20 cm of the measurement region. GPS and digital compass
output were digitally logged at 1 Hz. Winds were corrected
for ship motion and orientation as described in Miller et
al. (2008) and Landwehr et al. (2015). The eddy covariance
data streams were logged in both analogue and digital format
as described in Bell et al. (2013).

A3 High-frequency atmospheric DMS and CO2
measurements

Atmospheric DMS measurements were made at 10 Hz using
an atmospheric pressure chemical ionisation mass spectrom-
eter located in a lab van (UCI mesoCIMS; Bell et al., 2013).
Air was drawn to the instrument through a 28 m long 1/2 in
OD Teflon tube. A subsample of the air stream was passed
through a Nafion drier prior to entering the mass spectrom-
eter. The measurement was calibrated using an internal gas
standard of tri-deuterated DMS added to the inlet (see Bell et
al., 2013).

Atmospheric CO2 measurements were made on air drawn
at 8 L min−1 through a filtered inlet (90 mm diameter with 1
micron pore size, Savillex) near the sonic anemometers on
the bow mast, through 5 m of 5.9 mm ID polyethylene-lined
Dekabon tubing to two fast-response CO2/H2O IRGAs in an
enclosure on the bow mast. The IRGAs were open-path-style
sensors (LI7500, Licor Inc.) converted to a closed-path con-
figuration (see Miller et al., 2010) and were plumbed in se-
ries. A Nafion multi-tube membrane drier (PD-200T, Perma-
Pure) with 6 L min−1 dry air counter flow was installed be-
tween the two IRGAs such that the upstream IRGA sampled
undried air and the downstream IRGA sampled the same air
after drying. This technique removes 97 % of the Webb Cor-
rection from the measured CO2 flux (first shown by Miller et
al., 2010, and confirmed by Landwehr et al., 2014).

The air flow through both the CO2 and DMS inlets was
fully turbulent (Re > 10 000). The inlets used in this study
introduced a small delay (1t = 2.2 s for DMS, 1t = 1.2 s
for CO2) between measured wind and atmospheric measure-
ments, as well as minor loss of covariance at high frequencies
(< 5 %). The methods used to estimate the delay and loss of
flux are given in Bell et al. (2013).

Eddy covariance fluxes were computed for DMS and CO2
as FDMS or FCO2 = σair〈w

′c′〉, where σair is the dry air den-
sity, w′ is the fluctuation in vertical winds and c′ is the delay-
adjusted fluctuation in gas concentration. Average covariance
fluxes were processed in 10 and 9.5 min intervals for DMS
and CO2, respectively (hereafter referred to as 10 min inter-
vals). Momentum and sensible heat fluxes were also com-
puted for 10 min intervals (see Bell et al., 2013).

Sampling intervals with a mean wind direction relative to
the bow of > 90◦ were excluded from the final data set. CO2
fluxes were also excluded from intervals when either (i) rel-
ative wind direction changed excessively (SD > 10◦), (ii) rel-
ative wind speed was low (< 1 m s−1) or (iii) 1CO2 was low
(< |30| ppm). DMS and CO2 fluxes were quality controlled
for excessive low-frequency flux as described in the Supple-
ment of Bell et al. (2013). These quality control criteria ex-
cluded 62 % of the intervals for CO2 and 55 % for DMS and
significantly reduced the scatter in the data.
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