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Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet they are
inevitably associated with uncertainty. Identifying, quantifying, and communicating this uncertainty is key to both evaluating the risk associated
with a projection and building confidence in its robustness. We review how uncertainties in such projections are handled in marine science. We
employ an approach developed in climate modelling by breaking uncertainty down into (i) structural (model) uncertainty, (ii) initialization and
internal variability uncertainty, (iii) parametric uncertainty, and (iv) scenario uncertainty. For each uncertainty type, we then examine the current
state-of-the-art in assessing and quantifying its relative importance. We consider whether the marine scientific community has addressed
these types of uncertainty sufficiently and highlight the opportunities and challenges associated with doing a better job. We find that even
within a relatively small field such as marine science, there are substantial differences between subdisciplines in the degree of attention given
to each type of uncertainty. We find that initialization uncertainty is rarely treated explicitly and reducing this type of uncertainty may deliver
gains on the seasonal-to-decadal time-scale. We conclude that all parts of marine science could benefit from a greater exchange of ideas, particularly
concerning such a universal problem such as the treatment of uncertainty. Finally, marine science should strive to reach the point where scenario
uncertainty is the dominant uncertainty in our projections.
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Introduction

Climate change is expected to have major consequences for marine
ecosystems, including changes in biogeochemical cycles, trophic
flows, species life histories, distributions, and seasonality (IPCC,
2014; Gattuso et al., 2015). Such changes in turn impact how
society depends on, and is influenced by, marine ecosystems and
foodwebs. For example, there is a growing consensus that the roles
of the oceans in the production of food for humans and as a sink
for carbon dioxide will be altered due to climate change, and that
such alterations will have socio-economic consequences (Barange
etal.,2014).

Climate-change projections are based on models that attempt to
represent reality within the constraints of process understanding,
observational data, and future conditions. However, such models
may perform better at some spatial and temporal scales than others
(or can only perform at one scale), even though there may be profound
impacts on ecosystems and humans at other scales where model
performance is less satisfactory. Moreover, the skill of a model often
varies between variables; for example, global climate models typically
predict surface temperatures better than precipitation. Consequently,
the quality of model outputs depends on both the variable(s) being
forecasted and the space-time-scale considered.

Inan ecosystem or fisheries management context, however, what
often matters most is not necessarily how the climate or ocean
abiotic conditions will change, but how the biological components
of an ecosystem might respond to environmental change. For
example, if temperatures rise or ocean pH falls, how will these
changes affect fishery yields and biodiversity, where in the global
ocean will such changes be greatest, and when will these changes
occur? To answer these types of questions, it is necessary to
combine or integrate the oceanic component of climate models
with models of species ecology, population dynamics, and entire
foodwebs. As a result, uncertainty in physical climate models is
carried forward into ecological models. Moreover, there are often
multiple ways to model the same biological response (e.g. species dis-
tributions, reproductive success, predator—prey overlap, or the
growth rates of individuals or a population); often, the use of different
biological models with the same climate-ocean model output hasled
to different biological outcomes (Jones et al., 2012; MacKenzie et al.,
2012; Meier et al., 2012; Gardmark et al., 2013; Niiranen et al., 2013).
Consequently, efforts to adapt to and/or mitigate the effects of
climate change on marine ecosystems must operate in a framework
characterized by uncertainty from multiple sources.

The uncertainties associated with any type of projection can be
broken down into subcomponents. In this work, we consider four
main types of uncertainty: (i) structural (model) uncertainty, (ii)
initialization and internal variability (ITV) uncertainty, (iii) paramet-
ric uncertainty, and (iv) scenario uncertainty. These are the most
commonly recognized types used in climate science (e.g. Hawkins
and Sutton, 2009); however, other model-uncertainty taxonomies
also exist, including in a living marine resource context, e.g.
stock-assessment scientists refer to measurement error, model-
misspecification, and process error (Hilborn, 1987; Charles, 1998;
Francis and Shotton, 1998; Regan et al., 2002; Harwood and Stokes,
2003; Peterman, 2004; Hill et al., 2007). However, these taxonomies
generally converge on the forms of uncertainty identified above
anyway and we choose to follow this scheme. We discuss the
meaning of each of these terms in the corresponding sections below.

Some scientific fields have quantified the relative importance of
each of these types of uncertainties and how they vary. A particularly
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powerful and motivating example of what can be done comes from
meteorology where the total variability between climate projections
is partitioned into components due to model, scenario, and initializa-
tion uncertainties (Hawkins and Sutton, 2009). At short time-scales,
initialization uncertainty dominates, while at longer time-scales,
scenario uncertainty is generally the most important (Figure 1).
Marine science has not quantified its understanding of uncertainty
in such a formal and quantitative manner, although the evaluation
of model skill is clearly a rapidly developing area in the various disci-
plines of marine and climatological science (Lynch et al., 2009; Stow
et al., 2009; Zhang et al., 2010; Link et al, 2015). However, it is
also unclear how predictions from ecological models map onto this
partitioning of uncertainty over time, and what role parametric
uncertainty, for example, plays in this partitioning. Nevertheless,
much can be learned from the example of other fields.

This article addresses the topic of uncertainties in the projection
of marine climate-change impacts on ecosystems. We survey the
state-of-the-art and, for each of the uncertainty types, ask “what is
the current state of the art in assessing the relative importance of the
uncertainty type in marine biological science”? We consider whether
the marine scientific community has addressed these types of uncer-
tainty sufficiently. In cases where more work is required, we highlight
the opportunities and challenges associated with doing a better job. In
acompanion article in this volume (Cheung et al., 2015), a framework
is proposed that can be used to quantify the various forms of uncer-
tainty in greater detail. Together, these articles enable the marine
science community to be both more aware and more transparent
about the limitations, robustness, and usefulness of their projections.

Structural uncertainty
Structural, or model, uncertainty can be characterized as the uncer-
tainty associated with how the model is built up, i.e. how the model
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Figure 1. Contributions of various types of uncertainty to the total
uncertainty in IPCC model ensemble projections of mean surface
temperature over the British Isles. Relative (fractional) uncertainty of
the total (black) and each individual component: model uncertainty
(blue), scenario uncertainty (green), and internal variability
(initialization uncertainty: orange). Note the change in the relative
importance of the individual components. Reprinted from Hawkins
and Sutton (2009). © American Meteorological Society. Used with
permission. This figure is available in black and white in print and in
colour at ICES Journal of Marine Science online.
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translates inputs into outputs. Such uncertainty arises because we
often do not completely understand all of the mechanisms or pro-
cesses that occur in the real world. Consequently, there can be mul-
tiple working-hypotheses, each of which could be feasible. Data
considerations (e.g. presence-only observations, incomplete cover-
age of the full range of variability), practical limitations (e.g. avail-
able computational power), and implementation decisions (e.g.
choice of spatial/temporal resolution/aggregation, coding deci-
sions) may also influence our ability to produce an appropriate
model. Structural uncertainty arises as a direct consequence of
these constraints, and the fact that they can be accommodated in
multiple ways.

Modellers have often attempted to classify their models as a way
of understanding the differences between their approaches. An early
classification scheme (Levins, 1966) proposed the idea of three basic
model traits: precision, realism and generality. Levins then called
models that maximize realism and precision “empirical” models
(e.g. species distribution models), models that maximize generality
and realism “mechanistic’ models (e.g. IPCC-class models), and
models that are precise and general “analytical” models (e.g. Lotka—
Volterra predator—prey models). While this scheme has been contro-
versial, receiving both sharp criticism (Orzack and Sober, 1993;
Orzack, 2005, 2012) and robust defence (Levins, 1993; Odenbaugh,
2003), it is still a useful framework within which to discuss model
structure. Of particular interest here are the empirical models and
the mechanistic models; analytical models are rarely used to make
climate-change projections and will therefore not be considered
further.

The most common examples of empirical models are species dis-
tribution models. These models typically involve explaining a set of
observations of a species in terms of environmental correlates; the
assumption is that the models are able to identify and represent
the ecological niche of the species (Guisan and Zimmermann,
2000). Awide variety of models to link the observations and predic-
tors are available and the consideration of alternative model struc-
tures, approaches, and/or predictors is becoming common
(Planqueetal.,2011b; Jones et al.,2012). The readiness of such com-
parisons is enabled, in part, by the relatively low investment required
to perform species distribution modelling today: tools such as the
BioMOD package in R (Thuiller ef al., 2009) allow an ensemble of
model structures with standardized outputs to be rapidly fitted
to a set of observations. Such model-comparison exercises clearly
reveal the importance of model structure; for example, a compari-
son of three different models predicting the spatial distribution
of mackerel, Scomber scombrus (Figure 2), showed agreement
between the models in some areas (e.g. the North Sea), but also sub-
stantial disagreement in others (e.g. Iceland; Jones et al., 2012). This
disagreement between different models that have otherwise similar
inputs is the essence of structural uncertainty.

The consideration of model structure in large mechanistic models
(sensu Levins, 1966), such as circulation, biogeochemical, and eco-
system models, in contrast to empirical models, is less common.
Such models can be high in complexity, requiring large research
groups to run and maintain; developing multiple model structures
is therefore often not practical. More generally, where comparisons
of model structure exist, they tend to be made in separate papers
focused on the comparison aspect (e.g. Spitz, 2003; Friedrichs
et al., 2007; Travers et al., 2010; MacKenzie et al., 2012; Gardmark
et al., 2013), or via dedicated intercomparison projects, e.g. the
Marine Ecosystem Model Intercomparison Project, MAREMIP
(Hashioka et al., 2013; Sailley et al., 2013; Vogt et al., 2013).
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However, most model-structure comparison exercises are
limited in their scope by the fact that performing intercomparisons
is complex and time-consuming. Models are typically built for spe-
cific purposes and usually have different coverage of species, areas,
and time frames. Comparing model structures that are fundamen-
tally different (e.g. including both empirical and mechanistic
models) and are built for different purposes can therefore be chal-
lenging. However, such approaches are seen in the physical sciences;
for example, the IR/ CPC ENSO (EI Nifio/ La Nifia) forecasting system
includes both “dynamic” (mechanistic) and “statistical” (empirical)
models in its ensemble (Barnston et al, 2012). Attempts are now
being made in marine science to widen the scope of such intercompar-
ison exercises [e.g. the recently developed Fisheries Impact Model
Intercomparison Project (FISH-MIP) has solicited contributions
from a wide range of modelling groups and model types (ISI-MIP,
2015)]. Applying this intercomparison approach more generally will
help improve our understanding of the role of model structure.

A common feature of model-structure intercomparisons is that
they are often reported as “model democracies” with a “one model-one
vote” paradigm (Knutti, 2010), i.e. equal weights for all models. Such
an approach is often employed as a pragmatic compromise to avoid the
contentious question of which is the “best” model. However, this ap-
proach can only identify a range of possible outcomes: by failing to
assign probabilities or weights to each model structure, it is not possible
to say which of these outcomes is the most likely. For example, a model-
comparison project on the future of cod (Gadus morhua) in the Baltic
(Gardmark et al., 2013) gave a set of outcomes that included both ex-
tinction of the species and futures with unprecedented high levels.
While there were also key commonalities found among the models,
such as the importance of fishing pressure, not identifying the most
likely of these outcomes limits the usefulness in a climate-change adap-
tation context. A basic challenge thus involves moving beyond “model
democracies” towards finding methods to identify the “best” model or
models from an ensemble of candidates, or stated alternatively, a suite
of models that bounds a range of outcomes with quantified probabil-
ities (Townsend et al., 2014).

The question of the “best model structure” has been regularly
treated in both the statistical and modelling literature. A variety of
statistical methods exist to make such judgements (Johnson and
Omland, 2004) and can be used to weight the members of an ensem-
ble of models based on their historical predictive skill. The most
common of these are the so-called “information criteria” metrics,
such as the Akaike information criterion (AIC; Burnham and
Anderson, 2002), which aim at finding a balance between the
goodness-of-fit and the complexity of the model. Such approaches
have recently made their way into marine science, and are being used
regularly in, for example, stock-assessment (Millar et al., 2014;
Tanelli et al., 2015). Cross-validation techniques have also been
used extensively in the marine literature and are closely related.
Alternatively, and largely independently, a large number of
metrics and approaches have arisen in the modelling community
to quantify the skill of models (see, for example, the review by
Stow et al., 2009) and are also starting to see uptake in marine
science (Loots et al., 2011; Planque et al., 2011a; Cormon et al.,
2014; Link et al., 2015).

However, it is also clear that there is no “right” answer to identify-
ing the “best” model, and the choice should ultimately be driven by
the question being asked (Dickey-Collas et al., 2014). Nevertheless,
the continued application of such techniques in marine science repre-
sents a valuable opportunity to improve the treatment of structural
uncertainty in this field.
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Figure 2. Predicted distributions of relative habitat suitability (0 1) for Atlantic mackerel, S. scombrus, using three different species distribution
models parameterized using the same input data: (a) Maxent; (b) AquaMaps; (c) Sea Around Us Project model. Note the differences between model
predictions around Iceland and the Azores. Reprinted from Jones et al. (2012) with permission from Elsevier. This figure is available in black and
white in print and in colour at ICES Journal of Marine Science online.
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Initialization and internal variability uncertainty

IIV uncertainty is two different aspects of what is essentially one
feature of uncertainty. Initialization uncertainty is associated with
the initial conditions of a model (i.e. the state of the system from
which the model then integrates forward in time) and arises from
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Figure 3. The impact of initialization and internal variability
uncertainty on projections of surface air temperature across North
America. A 40 member ensemble of projections was generated under a
single climate-change scenario and model and with identical initial
ocean, land, and sea ice model components but slightly different
atmospheric initial conditions. Plots show the spatial distribution of
winter (December - January — February) temperature trends during
2005-2060 for the average of all ensemble members (top panel), and
the warmest (middle panel) and coolest (bottom panel) trends for the
region as a whole. Note the substantial spatial differences in trends
between the warmest and coolest ensemble members, and the
difference in signs in the centre of North America. Reprinted by
permission from Macmillan Publishers Ltd. Deser et al. (2012).
Copyright 2012.
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our inability to fully and accurately observe or characterize the
system at hand. Internal variability, on the other hand, is a charac-
teristic of all complex models and results in feedbacks, non-
linearities, and periodicities that may, or may not, be realistic. The
interaction between these two processes can give rise to chaotic be-
haviour, where small differences in starting points (states) are amp-
lified and the resulting trajectories diverge, instead of converging.
Uncertainty in the initialization can therefore be amplified by the in-
ternal variability inherent in a model.

Uncertainty due to initialization and internal variability is well
recognized in climate models and is the focus of significant research.
In some cases, particularly in attribution studies, the variability in
model outputs can be separated into those due to internal dynamics
of the model and those that are due to external forcing (Thompson
et al., 2015). However, such analyses are computationally intensive
and are therefore relatively limited. Other approaches have exam-
ined the sensitivity of model outputs to small perturbations in
initial conditions; in one example based on an ensemble of 40
members with otherwise identical setups, small variations in the at-
mospheric initial state were able to change the sign of the projected
temperature trend over parts of North America (Deser ef al., 2012;
Figure 3). The recognition of the importance of internal variability
and initialization uncertainty means that most climate model
outputs today typically include several realizations starting from
slightly different initial conditions.

The role of IIV processes is recognized and addressed in some
parts of biological science. Chaos and the importance of initial con-
ditions are well treated in the theoretical ecological literature. For
example, the Lotka—Volterra system of models (Wangersky, 1978),
a basic population dynamics model with feedbacks between predator
and prey growth rates, is a common textbook example that shows
strong sensitivity to initial conditions. Fisheries management is
dominated by initialization uncertainties; stock-assessment estimates
are more precise in the past than they are in the most recent year and
catch option forecasts therefore often incorporate this uncertainty
explicitly (e.g. ICES, 2012). The importance of IIV in limiting the
predictability of plankton models has also been demonstrated
(Baird, 2010). However, despite these examples, we are not aware of
any cases where initialization and internal variability uncertainty
has been treated explicitly in the context of climate-change projec-
tions of marine biological systems.

There exists, therefore, a need to address this uncertainty in more
detail. For empirical models, such as correlative species distribution
models, it seems likely that the internal variability and initialization
uncertainty present in the physical models will propagate directly
through into uncertainty in the biological outcomes. On the
other hand, mechanistic models, such as large end-to-end models
(e.g. ATLANTIS; Fulton et al., 2011) and ecosystem models (e.g.
NPZD plankton models), can be expected to exhibit a high degree
of internal dynamics of their own (Rose et al., 2010). How these
dynamics interact with internal variability in the physical forcing
will depend on the specifics of the situation; scenarios where dynam-
ics canbeboth dampened out (e.g. long-lived species) and amplified
(e.g. short-lived species) can be imagined, and can already be seen
in simple models (e.g. Lotka—Volterra systems). However, we can
expect that the resulting variance of the biological outputs will be
at least comparable to, and probably greater than, the sum of the
input variances due to internal variability.

Based on results from other fields, we can also expect that the im-
portance of ITV uncertainty will vary depending on the time-scale of
the question at hand. Hawkins and Sutton (2009) (Figure 1) showed
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that at short time-scales, uncertainty in the initial conditions dom-
inates, but its importance diminishes and eventually disappears over
time. This phenomenon is critical in seasonal-to-decadal forecast-
ing, and substantial improvements in the skill of such forecasts
have been made as a direct result of improvements in initialization
(Smith et al., 2007; Matei et al., 2012a, b): it therefore seems reason-
able to expect that it will also be of importance in the emerging field
of seasonal-to-decadal forecasting of marine ecosystems. Similarly,
IIV is of less importance if the question at hand relates to a broad
time-scale (e.g. decadal averages) or spatial region (e.g. continental
averages), where the internal variability can be averaged-out.
However, if the question is narrowly focused on a specific time or
spatial point, then the variability between different realizations of
the same model can be important.

Parametric uncertainty

Parametric uncertainty is the uncertainty associated with the para-
meters used in a model. Many processes can give rise to uncertainty
in parameters, including imperfect measurements (e.g. uncertainty
about the true parameter value in the statistical population); inad-
equate coverage of the range of natural variability; or natural variabil-
ity of biological parameters (e.g. within-population variability in prey
preference or growth rates; Figure 4). Furthermore, abstractions made
in the model itself may lead to parameters that do not have direct
biological interpretations, and are thus difficult or impossible to
measure directly; they are inherently uncertain, e.g. the vulnerability
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Figure 4. Parametric uncertainty in ecosystem models used to predict
climate-change effects on ecosystems. Parameters of ecosystem models
are commonly estimated from data using statistical methods or elicited
from expert input. Parameter uncertainty can be decomposed into
estimation error and uncertainty, resulting from finite and possibly
biased data as well as the application of a specific set of estimation
methods, and natural variability, which includes time-varying
parameters (e.g. variable reproductive success). Ecosystem models that
are specifically embedded within statistical frameworks (e.g. MICE
models) can be used to quantify both types of uncertainty and employ
a single model for estimation and forecasts (middle prediction arrow).
Simulation models usually decouple parameter estimation/elicitation
and forecasting, and, depending on the source of parameter
uncertainty considered, different methods may be used to assess the
impact of that uncertainty on forecasts of future ecosystem states (e.g.
repeated simulations with random sets of parameters to account for
estimation error /uncertainty, stochastic differential equations to
simulate natural variability).
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parameter in Ecopath (Christensen and Walters, 2004; Ahrens et al.,
2012), or the steepness parameter in stock assessments (Mace and
Doonan, 1988; Myers et al., 1999).

For well-bounded models, such as population dynamic models
with relatively abundant observational data, statistical frameworks
such as maximum likelihood and Bayesian methods are commonly
used to estimate model parameters and their uncertainty (Maunder
and Punt, 2013). Within these frameworks, a single model can be
used to estimate parameters and produce predictions (Figure 4).
Similarly, ecosystem model parameters such as trophic interactions
and species life history parameters can often be obtained within
these rigorous statistical frameworks, which allow estimation of
natural variability and uncertainty in parameter estimates (Thorson
and Minto, 2014; Neubauer and Jensen, 2015). However, even in
models of such low complexity, it is often difficult to robustly deter-
mine which parameters may be affected by climate change, or to
establish the mechanisms that govern this influence, e.g. a review
of published environmental effects on recruitment in fish stocks
revealed that few of these relationships held up under re-examination
(Myers, 1998).

Where mechanistic relationships between model parameters
and climate change are well established, these can be incorporated
into integrated population-dynamics models. In the Baltic Sea, for
example, the stock—recruitment relationship for sprat (Sprattus
sprattus) is thought to be temperature-dependent, and would
thus be affected by changing temperatures under climate change
(MacKenzie et al., 2012). When applied within a population-
dynamics model of sprat, the recruitment is driven by temperature
scenarios in detailed regional hydrographic models. However,
substantial uncertainty in future sprat populations arises from
unknown changes in cod (G. morhua) predation on sprat; since the
model does not produce forecasts of cod biomass or explicitly
model cod predation, the effect of different natural mortality rates
had to be investigated via sensitivity analysis instead (MacKenzie
et al., 2012). In a similar example, Smith et al. (2015) bounded the
range of parameter combinations used for estimating marine
mammal consumption as a partial function of temperature to rule
out which parameter sets would be infeasible. Thus, even in models
that can be fit using statistical methods, it is often necessary to
resort to more ad hoc sensitivity analyses for model components
that cannot be explicitly fit to data.

Statistical quantification of parametric uncertainty can also be
used for ecosystem models. However, such models are usually
limited to data-rich subsets of whole ecosystems; such models are
sometimes called “Models of Intermediate Complexity for
Ecosystem assessments” (MICE; Plaganyi et al., 2014). As with
single-species models, a mixture of statistical fitting and sensitivity
analysis can be applied when using these models for climate-change
forecasts. For more complex trophodynamic or ecosystem models,
where observational data are limited to certain components of the
system and parts of their natural variability (e.g. abundance and
catches of selected fish and invertebrates, data from a single
season), it is difficult to use formal statistical methods to estimate
parameters and their uncertainties. In these cases, sensitivity ana-
lysis is to date the only option to explore the robustness of the
model outputs to uncertainties associated with specific input par-
ameter values: however, new methods, such as functionality
filters, are also emerging (Fulton, 2010).

Sensitivity analysis provides a common alternative where statis-
tical approaches cannot be employed. Such analyses involve varying
input parameters to examine the consequences of uncertainty or
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error in model inputs, to assess the effects of temporal variability in
specified parameters, or both. While both types of sensitivities often
involve Monte Carlo procedures to randomly select parameters (i.e.
at the start of the simulation for parameter uncertainty, and
throughout the simulation for natural variability), the two types
of sensitivity analyses can give very different answers about the un-
certainty of predictions (Kremer, 1983). If conducted in a well-
designed model “experiment”, such sensitivity analyses can never-
theless be insightful and useful.

Sensitivity analyses are, for complex ecosystem models, often
paired with expert judgement to assess output sensitivities to par-
ameter uncertainty. Cheung and Sumaila (2008), for instance,
used two approaches to test the sensitivity of parameters in an
Ecopath with Ecosim model of the Northern South China Sea
(NSCS). First, a sensitivity analysis approach was used, during
which input parameters were varied by up to 50%. In the second ap-
proach, values of the input parameters of the NSCS models were
randomly selected from statistical distributions predefined in the
“pedigree” (Christensen et al., 2005), a routine to allow expert as-
signment of reliability of each input parameter. Based on all
values resulting in mass-balanced models, confidence limits for
input parameters of the 1970s and 2000s NSCS models could be esti-
mated (Cheung and Sumaila, 2008).

Sensitivity analyses and expert judgement can thus illustrate po-
tential ranges of modelled output responses and identify the most
sensitive parameters; however, they cannot formally determine
which of the outputs are most likely. Although statistical methods
currently used in single species and MICE models are probably not
suited to more formal estimation in whole ecosystem models, emer-
ging statistical methods such as approximate Bayesian computation
(Toni et al., 2009) and Bayesian history matching (Andrianakis
et al.,, 2015) are promising methods that can combine concepts
akin to sensitivity analyses with formal statistical linking to data. In
summary, the selection of approaches to estimate parameter uncer-
tainty should be determined by the types of model, availability of
observational data, our understanding of the processes modelled,
and the modelling objective.

Scenario uncertainty
Improving forecasts of future ecosystem states is the primary goal of
climate-change-focused research. However, it can be argued that no
matter how much understanding of ecosystem complexity we
achieve, ecological predictions will continue to be dominated by sig-
nificant uncertainties. Even if we had models without structural, ini-
tialization or parametric uncertainty, the way society will respond to
outcomes will generate feedback loops that will interact with predic-
tions. In these circumstances, the scientific community has to rely
on scenarios to consider complexity and irreducible uncertainty.
The use of scenarios originated in military planning, and was
extended in the 1960s into strategic planning in businesses where
decision makers wanted to analyse, in a systematic way, the implica-
tions of strategic decisions with long-term consequences (Moss
et al., 2010). Scenarios, which can use a combination of model
outputs, expert analysis, and contrasting subjective alternatives,
aim at the development of alternative, plausible trajectories of eco-
systems, where the uncertainties are part of the scenario planning.
This open acknowledgement of uncertainties is in contrast to fore-
casts that narrowly limit them to a single potential outcome that is
assumed to be predictable (Schindler and Hilborn, 2015). It would
be easy to argue that any policy response developed under the
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Scenarios
Predictive Explorative Normative
Forecasts What-if External  Strategic Preserving Transforming

Figure 5. Scenario typology with three categories and six types.
Reprinted from Borjeson et al. (2006) with permission from Elsevier.

former will make us better prepared to face the challenges of
climate change.

The term “scenario” is used in many contexts and with different
meanings, but they are all descriptions of possible futures that reflect
different perspectives on the past, the present, and/or the future.
Borjeson et al. (2006) offered a useful classification to understand
scenarios, based on the principal questions we believe a user may
want to pose about the future (Figure 5). If we are interested in
knowing what will happen, then we are in search of predictive scen-
arios. These are either based on best-case scenarios (Forecasts) or on
the likelihood of specific conditions to occur (if x then y, known as
What-if). They are useful to planners and investors, who need to
deal with foreseeable challenges and take advantage of foreseeable
opportunities. Predictive scenarios are based on a statistical ex-
trapolation of trends, such as patterns of biodiversity loss based
on recent trends, or some form of deterministic model of reality.

Explorative scenarios, on the other hand, respond to the question
what can happen? Their objective is to explore situations or develop-
ments that are regarded as possible, usually from a variety of per-
spectives and are usually easily understood and appreciated.
Explorative scenarios can focus only on factors beyond the control
of the relevant actors (External) or describe how the consequences
of a decision can vary depending on which future development
unfolds (Strategic). The IPCC SRES Scenarios (IPCC, 2000) were
fundamentally exploratory, because they reflected future climates
that might occur based on a range of external and internal decisions
without specific probabilistic value.

Finally, normative scenarios respond to how can a specific target
be reached? Their focus of interest is on certain future situations
or objectives and how these could be realized, either to protect
present states or to transform unwelcome states. Normative scen-
arios can be useful by inspiring policy or management action by pro-
viding a reflection of the future that would meet societal goals. They
can also limit options by becoming an argument for taking the
actions required. There is no “objective” mechanism or process to
co-opt others into the normative vision, and one person’s very
serious normative scenario is another’s silly fantasy. This lack of ob-
jectivity means that normative scenario outcomes, and the logic
supporting their choices, must be communicated clearly.

A number of techniques are used to develop the different scenario
types described above, ranging from workshops, expert panels, or
surveys for generating and collecting ideas, and a set of modelling
and time-series analysis to integrate these ideas into scenario
results. In practice, most scenario analyses combine elements of pre-
dictive, exploratory, or normative principles. Using them wisely pro-
vides a strong basis for dealing with uncertainty without resolving it.

However, there are examples where scenarios are not only used to
visualize the future but also to manage the intrinsic uncertainties
that dominate in social—ecological systems. A particularly favoured
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example in the context of marine fisheries is the management strat-
egy evaluation (MSE) framework, which was developed to assess the
consequences of a range of different living marine resource manage-
ment strategies (De la Mare, 1986; Butterworth and Punt, 1999;
Smith, 1999; Punt et al., 2014). The strength of the MSE approach
is that rather than using a single model to find an optimal solution,
multiple candidate models, different formulations of one model, or
various assumptions, forecasts, and management options are con-
sidered. MSE involves using an “operating model” to represent
the “true” underlying dynamics of the fishery resource and to gen-
erate simulated future data; an “estimation model” which is then
used to assess the state of the stock, species, or response group of
interest relative to agreed target and limit reference points based
on the simulated data; and one or more decision rules to determine
what management actions should happen. The success of the MSE
approach depends on the extent to which the true range of uncer-
tainties can be identified and represented in the operating models,
such as process, observation, estimation, model, and /or implemen-
tation error (Kell et al., 2007). Under the MSE approach, each step of
the adaptive-management approach is modelled and the conse-
quences of alternative scenarios for each of the above uncertainties
are evaluated in search of solutions that perform acceptably.
Therefore, the use of “scenarios” is slightly different here, because
it is not focused specifically on visualizing future options but on
evaluating the contributions of all other sources of uncertainty in
a scenario framework.

Discussion and conclusions

The perception of uncertainty in climate-change research is clearly
evolving, including in the marine fisheries and ecological research
communities. Until recently, uncertainty has been treated, if at all,
in an aggregated way with little recognition or understanding of
the factors that contribute to its magnitude, or has focused on
only one or two aspects of uncertainty. In the fisheries research com-
munity, this focus could be on, for example, uncertainty in catches
(due to misreporting); biological processes (e.g. natural mortality
rates) that affect stock productivity or risk of overestimating
fishing pressure, among others. However in the past 10—15 years,
and with the increasing collaboration among scientists from differ-
ent disciplines (particularly from climate and meteorological com-
munities but also empiricists and modellers), a more general
recognition that uncertainty is multifaceted and can be decomposed
into several elements, as described above, is developing. Identifying
these distinct facets helps to better address them and thus better
handle uncertainty.

Our survey of marine science has shown that the treatment of un-
certainty varies greatly with the type of uncertainty and the discip-
line; for example, scenario and structural uncertainties are widely
recognized and commonly approached in the species distribution
literature, while parametric uncertainty is more commonly
handled in the ecosystem literature and IIV uncertainty appears to
be rarely treated. The different approaches and degree of under-
standing we encountered was surprising, given the relatively small
size of marine science. However, each of these disciplines has its
own questions and challenges and given the tendency for scientific
fields to be isolated from each other, such differences are perhaps
not so surprising on second thought. It is nevertheless clear that
all fields in marine science could benefit from greater exchange of
ideas, particularly concerning a common problem such as the treat-
ment of uncertainty.

M. R. Payne et al.

Nevertheless, some parts of marine science clearly have a much
better developed approach to uncertainty than others. For example,
the MSE community in particular has been grappling with the
many facets of uncertainty for nearly three decades and in some
regards is more developed than in the climate sciences. The advanced
state can most likely be attributed to the close linkage between
fisheries science and the ongoing need to routinely and regularly
make high-stakes management decisions in the face of uncertainty
(Dankel et al., 2012). Adapting the tools and approaches of this
field to questions about future change may be a potentially productive
focus area for future research.

Here, we have discussed the various types of uncertainty inde-
pendently of each other. While thisis both a traditional and conveni-
ent manner of approaching these issues, it is important to remember
that uncertainties in the real world do not combine linearly or
additively. Non-linearities and feedbacks are common in marine
ecosystem models and can both amplify and reduce uncertainties.
Partitioning uncertainty into its components is a convenient way
to address and understand the various contributions to uncertainty,
and is useful to focus future development. However, the question of
how these uncertainty components propagate through the model-
ling system and potentially reinforce or cancel each other ultimately
depends on the specifics of the individual system, and therefore
needs to be addressed for each individual instance.

Marine ecosystem models are usually modular in nature, and
typically consist of a biological component coupled to physical
and biogeochemical components. The coupling of these modules
is not a straightforward task, and can pose challenging scientific
and practical questions; for example, should the grazing pressure
in an individual-based fish-larval model feed back into the dy-
namics of lower trophic levels (e.g. Daewel et al., 2011) or is
one-way coupling sufficient (e.g. Christensen et al., 2013)?
Similarly, inputs of physical parameters need to be matched to the
temporal and spatial scales on which biological models (e.g.
species distribution models) operate; the choice of downscaling
method (to convert global-scale climate model predictions to
regional-scale predictions) can be as important as the choice of
climate model itself. It is tempting to consider this additional com-
plexity as an additional type of uncertainty, (“coupling uncer-
tainty”) unique to ecological models. However, similar coupling
problems also occur in the physical sciences, e.g. general circulation
models typically couple oceanographic, atmospheric, and often bio-
geochemical models that were developed separately. Such uncertainty
canbest be considered as another aspect of structural uncertainty, and
can be handled by considering the various permutations of physical
and biological models and their coupling (e.g. MacKenzie et al.,
2012; Niiranen et al., 2013).

Assessments of the accuracy and precision of any model projec-
tion typically involve comparisons against observational data.
However, data, by definition, are always historical in nature, and
therefore we ultimately can only judge the past performance of the
model. Good historical performance, however, is no guarantee of
good future performance (Barnsley, 2007). Climate-change projec-
tions almost always involve extrapolation of some form and pro-
cesses and interactions that become important in the future [e.g.
adaptation of organisms to ocean acidification (Sunday et al.,
2014)] may not be parameterised appropriately or omitted from
models altogether. These “unknown unknowns” are the ultimate
limitation on the skill of our model projections. Although past
model performance sometimes is the only guide to future reliability,
we suggest that model projections be accompanied with a thorough
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and formal assessment of known uncertainties. These will however
represent a lower-bound on the true uncertainty, whose magnitude
is difficult (and perhaps impossible) to quantify.

Beyond data availability issues, uncertainty associated with
limited process understanding is somewhat implicit in any model
structure. Experimental research frequently focuses on short-term,
individual-level impacts in isolation. However, climate change will
impact distinct aspects of species ecology, such as metabolic rates
and complex predator—prey interactions, in different directions;
such changes cannot be predicted by investigating individual-level
impacts in isolation, or by considering climate stressors separately.
Poor model skill can be indicative of such limitations, and can be
used to help identify future direction for observational research. A
close collaboration between experimentalists and modellers is there-
fore essential to ensuring progress in this field (Queirds et al., 2015).

Clarity about the different types of uncertainty and their relative
importance is also important for focusing research where the great-
est gains can be made. While some uncertainty types can potentially
be reduced, others cannot (at least in the foreseeable future), e.g. the
actual CO, emission pathway that comes to be realized is largely
beyond the control of marine scientists and little can be done to
reduce this type of uncertainty. In contrast, other types of uncer-
tainty can potentially be reduced via developing better knowledge
of key processes that generate the highest uncertainty. If, for
example, the largest source of uncertainty is due to structural uncer-
tainty, then it might be relevant to conduct new (field, lab, model-
ling) studies to identify and quantify the sources of uncertainty
and develop new model formulations. MacKenzie et al. (2012)
used this approach to highlight uncertainty in stock—recruitment
processes as dominating uncertainty in projections of the physical
environment. Similarly, at short time-scales where initialization un-
certainty is the most important source of uncertainty, improve-
ments in the initialization of oceanographic models have led to
great advances in decadal forecasting (Matei et al, 2012b).
Understanding the relative importance of each uncertainty type
can therefore highlight where the greatest improvements can be
made.

Finally, these considerations define a clear goal for research on
the impacts of climate change on marine ecosystems. We propose
that the research community should strive to improve projection
models to the point where the largest uncertainty is due to scenario
uncertainty, while other uncertainties are comparatively minor.
Scenario uncertainty will remain large as it is the space where
researchers and users explore plausible outcomes on the basis on ir-
reducible elements (e.g. policy changes, economic development
aspirations, etc.). The relative magnitude of this scenario uncer-
tainty is therefore a useful yardstick for our field’s progress and
one that allows us to realistically and reliably judge the robustness
of our projections.
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