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Abstract 25 

Understanding long-term, ecosystem-level impacts of climate change is challenging because 26 

experimental research frequently focuses on short-term, individual-level impacts in isolation. 27 

We address this shortcoming first through an inter-disciplinary ensemble of novel 28 

experimental techniques to investigate the impacts of 14-month exposure to ocean 29 

acidification and warming (OAW) on the physiology, activity, predatory behaviour and 30 

susceptibility to predation of an important marine gastropod (Nucella lapillus). We 31 

simultaneously estimated the potential impacts of these global drivers on N. lapillus 32 

population dynamics and dispersal parameters. We then used these data to parameterise a 33 

dynamic bioclimatic envelope model, to investigate the consequences of OAW on the 34 

distribution of the species in the wider NE Atlantic region by 2100.  The model accounts also 35 

for changes in the distribution of resources, suitable habitat and environment simulated by 36 

finely resolved biogeochemical models, under three IPCC global emissions scenarios. The 37 

experiments showed that temperature had the greatest impact on individual level responses, 38 

while acidification has a similarly important role in the mediation of predatory behaviour and 39 

susceptibility to predators. Changes in Nucella predatory behaviour appeared to serve as a 40 

strategy to mitigate individual level impacts of acidification, but the development of this 41 

response may be limited in the presence of predators. The model projected significant large-42 

scale changes in the distribution of Nucella by the year 2100 that were exacerbated by rising 43 

greenhouse gas emissions. These changes were spatially heterogeneous, as the degree of 44 

impact of OAW on the combination of responses considered by the model varied depending 45 

on local environmental conditions and resource availability. Such changes in macro-scale 46 

distributions cannot be predicted by investigating individual level impacts in isolation, or by 47 

considering climate stressors separately. Scaling up the results of experimental climate 48 
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change research requires approaches that account for long-term, multi-scale responses to 49 

multiple stressors, in an ecosystem context. 50 
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Introduction 51 

Future oceans will challenge marine organisms with a multitude of ecosystem-level stressors 52 

associated with global environmental change (Byrne et al., 2013). Increased atmospheric CO2 53 

concentrations will both decrease the ocean pH (i.e. ocean acidification) and the saturation of 54 

carbonated minerals, disrupting marine carbonate chemistry as well as increasing sea 55 

temperature (Doney et al., 2009, Feely et al., 2004, Harvey et al., 2013, Kroeker et al., 2013). 56 

Biological responses to Ocean Acidification and Warming (OAW) are thought to depend on a 57 

number of physiological and life history attributes at larval, juvenile and adult stages, such as 58 

their dependence on (and type of) calcifying structures, and their ability for acid-base 59 

regulation (Kroeker et al., 2013). These responses depend on physiological trade-offs, that is, 60 

the transformation and allocation of energy in an organism, determining its demand for 61 

resources, and constraining the allocation to vital cellular functions that contribute to 62 

organismal performances, survival, and fitness (Brown et al., 2004, Findlay et al., 2011). 63 

Predicting long-term ecosystem-level responses of individual species is, however, difficult 64 

because experimental climate change research often focuses on single, short-term, species 65 

level responses in isolation (Kroeker et al., 2013). What’s more, long-term responses are 66 

confounded by the ability to adjust and adapt life-history patterns, both of which vary 67 

between species and populations (Eliason et al., 2011). Further, inter-specific interactions 68 

may regulate high-level impacts of climate change (Harley, 2011), but have received less 69 

attention than single-species impacts in the last decade (Wernberg et al., 2012). Individual-70 

based responses of single species alone are thus unlikely to provide a sufficient basis to 71 

understand long-term responses in complex ecological environments, where species also 72 

interact (Harley, 2011). The response of a population to a changing environment further 73 

depends on other processes that operate at different scales, including modifications of 74 

behaviour, dispersal and population dynamics (Pörtner &  Knust, 2007).  These depend also 75 
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on the availability of habitat and resources necessary to support life (Thomsen et al., 76 

2013),which are driven by environmental conditions varying in space and time. 77 

 78 

Biogeochemical ecosystem models are mathematical descriptions of ecosystem processes, 79 

that capture essential rates and flows of matter and energy in space and time, and link them to 80 

the environment and biota. These can be used to project the bulk properties of ecosystems 81 

(Allen et al., 2010) into the future and the past. These models therefore provide a holistic 82 

view of ecosystems where large scale research questions about global climate change can be 83 

addressed (Artioli et al., 2014). However, the integration of detailed, species-level 84 

experimental information into these macro-scale applications has been limited, because these 85 

models operate at much larger spatial and temporal scales and because, for practical reasons, 86 

they typically include only very generic descriptions of species (Anderson, 2005). Such 87 

integration requires the use of a different type of macro-scale models that can use large-scale 88 

environmental patterns, as projected by biogeochemical ecosystem models, and merge it with 89 

finer mechanistic descriptions of individual species responses to that environment (Jørgensen 90 

et al., 2012). Dynamic bioclimatic envelope modelling (DBEM) enables this approach 91 

(Cheung et al., 2011, Fernandes et al., 2013). In DBEMs, the impacts of environmental 92 

stressors on important aspects of species ecology like physiology, population dynamics, 93 

dispersal, trophic interactions and resource use (i.e. species traits) are considered 94 

simultaneously, and can be constrained using experimental or literature derived information 95 

gathered at the species-level. This information is complemented by observational species 96 

habitat preference data, and macro-scale biogeochemical simulations of environmental 97 

conditions and resource availability (i.e. primary production), to project the corresponding 98 

changes in macro-scale species distributions (Cheung et al., 2011, Kearney &  Porter, 2009). 99 

This framework therefore has the potential to overcome the limitations of previous 100 
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methodologies, and significantly enhance the way in which the necessary, detailed, species-101 

level experimental climate change research is integrated, interpreted, and used in ecosystem 102 

level applications. 103 

 104 

Here, we used a variety of novel techniques to quantify long-term impacts of OAW on 105 

species level physiology and trophic interactions of the dogwhelk Nucella lapillus (Linnaeus, 106 

1758), a species that exerts strong influence in temperate rocky-shore ecosystems through 107 

top-down controls (Trussell et al., 2003 and references therein). Nucella preys on barnacles 108 

and mussels, foundation species that modify 3D habitat complexity, providing shelter to other 109 

species, facilitating the development of algal canopies, and therefore the recruitment of other 110 

fauna (Menge &  Branch, 2001). Nucella predators like the crab Carcinus maenas (Leach 111 

1814) also exert indirect controls on the abundance of Nucella prey species via trophic 112 

cascades (Trussell et al., 2003). These are key mechanisms for the maintenance of 113 

biodiversity in temperate rocky-shores. Thus, investigating how the predatory activity of 114 

Nucella and its vulnerability to predators are modified by global stressors is key to 115 

understanding and predicting how rocky-shore systems may change in a near-future. In order 116 

to do so, we measured Nucella’s response to five scenarios of OAW after a 14 month long 117 

mesocosm experiment, thus avoiding artefacts caused by shock responses to stressors 118 

observed in short-term experiments (Form &  Riebesell, 2012). We measured changes in 119 

Nucella’s resting oxygen consumption (a proxy for metabolic rate in heterotrophs, the 120 

energetic cost of living, Brown et al., 2004) and basal activity (i.e. motor activity in the 121 

absence of stimuli). These two parameters were used to verify the presence of functional 122 

trade-offs, which were expected to be negatively affected by energetic expenditure associated 123 

with increased energy cost due to exposure to acidified conditions (Calosi et al., 2013, Parker 124 
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et al., 2013) and up-regulation of metabolism by warming (Brown et al., 2004). We then 125 

investigated how these individual level responses related to the wider ecology of Nucella, by 126 

measuring trophic interactions relevant at the community level: predatory behaviour and 127 

vulnerability to predation. First, we monitored the behavioural response of Nucella to a prey 128 

mimic made of fresh tissues of a prey species (the mussel Mytillus edulis, Linnaeus 1758) 129 

using time-lapse photography and digital tracking techniques. Second, as the shell of Nucella 130 

is its main defence against predators (Crothers, 1985), we used micro-computer-aided 131 

tomography (“microCT”) to quantify changes in shell integrity as a proxy for its vulnerability 132 

to predation. We complemented these observations with an assessment of the impacts of the 133 

long-term experimental treatments on other parameters associated with the wider population 134 

dynamics of the species, such as growth and mortality. Finally, we used these results to 135 

parameterize, for the first time, a size-spectrum based DBEM (SS-DBEM, Fernandes et al., 136 

2013). This enabled us to scale-up our species-level experimental results, by modelling how 137 

the combination of all the ecologically relevant measured responses to OAW may impact on 138 

the distribution and abundance of Nucella lapillus in the broader NE Atlantic region, by the 139 

year 2100. The biogeochemical models used by the SS-DBEM were forced using three global 140 

emissions scenarios from the 4
th

 and 5
th

 IPCC Assessment Reports (IPCC, 2007, IPCC, 2013) 141 

to simulate three possible degrees of future global change. The projected Nucella 142 

distributions in each scenario were expected to reflect the local impacts of changing abiotic 143 

parameters and resource availability over time, given that the low dispersal potential of this 144 

species (i.e. low mobility and direct development, Crothers, 1985) would likely limit its 145 

ability to track possible changes in the distribution of suitable habitat. The diversity of data 146 

and techniques used here was therefore expected to provide a more complete assessment of 147 

how species-level impacts of acidification and warming may propagate across to community 148 

and ecosystem scales, than could be predicted from individual-level responses alone.  149 
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Materials and Methods 150 

 151 

Mesocosm setup and experimental exposures 152 

Nucella lapillus individuals were collected from the low intertidal and sub-tidal fringe of the 153 

rocky-shore in Mount Batten, in the Plymouth Sound (N 50° 21' 30.29", E -4° 7' 50.07") in 154 

January 2011. All individuals were immediately transported to the PML Intertidal Mesocosm 155 

Acidification System (PML-IMAS) within one hour of collection, where they were initially 156 

allowed to acclimate to laboratorial conditions in ambient seawater, pH and temperature, for 157 

approximately three weeks. Experimental exposure was initiated in February 2011, and lasted 158 

14 months. A detailed description of the mesocosm setup and monitoring parameters for 159 

temperature, salinity, pH, total alkalinity, inorganic nutrients and associated calculated 160 

carbonate system parameters can be found in Findlay et al. (2013) and Table SI. In summary, 161 

the PML-IMAS consists of twenty 1 m
3
 mesocosm tanks (700 L of seawater and 300 L of 162 

overlying atmosphere) set up in four rows of five. Five experimental treatments were 163 

haphazardly allocated between the 20 tanks, with four replicate tanks per treatment. The PML 164 

–IMAS uses a pump and ballast system to simulate a semi-diurnal tidal cycle that followed 165 

the monthly local conditions in the Plymouth Sound during the exposure period. The day-166 

night light cycle was simulated to replicate the average amount of hours for each month.  167 

Each tank had an individual recirculating pumping and filtration system.  168 

 169 

The experimental treatments used corresponded to three CO2 concentration treatments at 170 

ambient temperature, i.e. the “ambient” treatments: 380, 750 and 1000 ppm; and two CO2 171 

concentration treatments at ambient temperature plus 2
o
C, i.e. the “warm” treatments: 380 172 
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and 750 ppm. Forty-two individuals were haphazardly allocated to each tank, after the initial 173 

acclimation period and once experimental conditions had stabilized. Potential shock effects 174 

caused by this non-gradual transition into experimental conditions were expected to have 175 

been overcome after more than one year of exposure to experimental conditions, when the 176 

measurements were conducted. The mesocosm laboratory is a temperature controlled room 177 

that was set so that the seawater temperature in the ambient temperature treatment tanks 178 

followed the average monthly sea surface temperature variability at the Western Channel 179 

Observatory L4 station, in the Plymouth Sound (fig. S1). These conditions were seen to be a 180 

good representation of the bulk temperature variability at the site where the animals were 181 

collected. Warm temperature treatments were further regulated by use of 300 W immersion 182 

heaters in individual tanks. The level of acidification in each tank was regulated using a pre-183 

mixed gas system modified from Findlay et al. (2008). In brief, the desired atmospheric CO2 184 

concentration was created by mixing pure CO2 gas with CO2-free air using flow meters and 185 

mixing vessels, monitored with a closed path CO2 analyser (820, Li-Cor). Each mesocosm 186 

tank was bubbled with the desired air or CO2-air mix, and the seawater was allowed to reach 187 

equilibrium. Loss of CO2 from the overlying “atmosphere” was minimised by thick PVC 188 

covers positioned over each tank and effectively separating the tank atmosphere from the 189 

room atmosphere. The pH in the control treatments was maintained as closely as possible to 190 

the yearly mean pH at L4 (2008-2012), i.e. pH = 8.08 ± 0.07 (mean ± SD), via regulation of 191 

the CO2 concentration as above. During the emersion periods, N. lapillus individuals were 192 

exposed to the desired CO2 atmosphere and during immersion the organisms were exposed to 193 

sea water which had adjusted its carbonate chemistry in response to the atmospheric CO2 194 

conditions. Therefore, the experimental treatments exposed our animals to some degree of 195 

daily variability in pH and temperature associated with the experimental semi-dial tidal 196 

cycles that may be seen as a bulk representation of this variability in a true intertidal rocky-197 
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shore. Further variability associated with inter-tidal micro-habitats (Helmuth &  Hofmann, 198 

2001) would have been difficult to standardize across replicates, and possibly deter from our 199 

ability to test the impact of our main experimental treatments. 200 

 201 

Activity and predatory behaviour assessment setup 202 

Fourteen months after the beginning of the mesocosm exposures, the basal activity and 203 

predatory behaviour of two groups of three individuals from each tank were assessed. The 204 

assessment setup consisted of individual 12 x 12 x 40 cm transparent acrylic tanks 205 

(“assessment tanks”), enclosing a water layer of approximately 35 cm (0.5 L), and a 5 cm 206 

atmosphere (0.07 L). Each tank was placed at one end of a closed 35 x 64 x 90 cm wooden 207 

black box, illuminated with an 8 W light. Within each box, at the opposite end, a digital SLR 208 

camera (Canon EOS 500 D, 15 MP) was setup to be remotely controlled via a PC, using the 209 

time-lapse photography software EOS GB time-lapse. The camera enabled the recording of 210 

individual behaviour during the assessments (focal distance = 70 cm). Water conditions were 211 

manipulated in individual header tanks to reflect those in the mesocosm system in which the 212 

individuals had been maintained during the previous 14 months, and supplied to the 213 

assessment tanks at approximately 40 mL min
-1 

via a peristaltic pump system. In each header 214 

tank, regulation of temperature was achieved by use of 100 W immersion heaters. The pH 215 

was regulated by gentle bubbling of the desired air (or CO2-air mix described above) in 216 

header tanks and in the assessment tanks, using small aquaria diffusing stones. A closed re-217 

circulation system maintained conditions constant throughout each assessment.  218 

 219 

Behavioural assessments 220 
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During each assessment (see fig. S2), a randomly selected group of three animals from each 221 

tank (n groups total = 40; n groups per treatment = 8) was gently lowered to the bottom of the 222 

assessment tanks by use of a device made out of nylon mesh and wire, ensuring minimum 223 

direct manipulation and disturbance of individuals. Each black box was immediately closed, 224 

sheltering individuals from any disturbance related to the presence of observers. Time-lapse 225 

recording of images was initiated immediately, and carried out at five minute intervals for 226 

three hours (nimages per assessment = 36). The assessment of individual groups was randomized 227 

across treatments over time to avoid confounding of observed behaviours and mesocosm 228 

exposure length, as only two groups could be assessed per day. Randomization was achieved 229 

using the random number generator package “random” for R (R Foundation for Statistical 230 

Computing, Vienna, Austria). Individuals would typically reposition themselves onto the 231 

waterline as soon as they were introduced to the assessment tanks, as observed by others 232 

(Vadas et al., 1994). Basal activity was therefore measured through the quantification of the 233 

overall speed of individuals during their trajectory to the water line at the top of the 234 

assessment tank. This behaviour was assessed for 3 hours, as this period has been found to be 235 

more than sufficient for individual N. lapillus to adjust to the experimental setup and carry 236 

out a decision process as to where to place themselves within it (Vadas et al., 1994). Because 237 

the presence of one animal in this area appeared to influence the speed and direction of other 238 

animals in choosing a location in the tank, “basal activity” henceforth refers to the 239 

measurement of the ratio of the distance to time (i.e. “speed”) of the first animal to reach the 240 

waterline in each assessment. When that animal reached the waterline, movement was 241 

recorded only for the time elapsed until then. When all animals failed to reach the waterline 242 

during the assessment period, all movements were recorded over the three hours, and basal 243 

activity (time and distance, to calculated speed) considered for the individual that initiated 244 

movement first. At the end of the activity assessment (3 hours) a prey mimic was gently 245 
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lowered to the bottom of the assessment tank, using a mesh device as before to minimize 246 

interference. The response of individuals to this prey mimic was investigated as a proxy for 247 

predatory behaviour. The mimic consisted of a bag of approximately 10 g of fresh live 248 

mussels (Mytillus edulis, Linnaeus 1758), which were manually crushed and immobilized 249 

within a closed double mesh bag immediately prior to the assessment. This standardization of 250 

the prey mimic was required to avoid confounding of the responses associated with a choice 251 

of prey based, for example, on prey size (Crothers, 1985). The prey mimic was placed near 252 

the diffusing air stone in each assessment tank to maximize the distribution of prey odour 253 

cues (fig. S2). “Response time” was recorded as the time taken by the first individual to reach 254 

the prey mimic, because the presence of one feeding animal appeared to deter other 255 

individuals from approaching the prey mimic. Equally, “foraging distance” was recorded as 256 

the overall length of the trajectory covered by the first individual to reach the prey mimic.  257 

“Handling time” was calculated as the time during which individual animals were observed 258 

directly manipulating the mesh bag containing the prey mimic. When no individuals were 259 

able to find the position of the prey mimic, the trajectory considered was that of the most 260 

active individual, for all responses to prey. As difficulty in locating food may be an indication 261 

of limited chemo-sensory function that has been observed in polychaetes (Schaum et al., 262 

2013), crabs (de la Haye et al., 2012) and fish (Cripps et al., 2011, Dixson et al., 2010, 263 

Johannesen et al., 2012) exposed to acidification, we investigated possible mechanisms by 264 

which Nucella could compensate such potential limitation. To this end, we measured the ratio 265 

of foraging distance to prey handling time (“foraging cost”) as an indication of the energetic 266 

expenditure associated with foraging in relation to the energetic gain associated with feeding. 267 

This was calculated to provide an overall energetic cost-benefit metric of predatory 268 

behaviour. All assessments were timed to match the introduction of the prey mimic to dusk, 269 

when individuals were expected to be most active (Crothers, 1985). Predatory behaviour was 270 
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assessed for three hours after the introduction of the prey mimic, with images captured at five 271 

minute intervals (n images per assessment = 36), as before. At the end of the six hour assessments, 272 

all dog whelks were gently removed from assessment tanks, marked, and individual wet 273 

weights and lengths recorded, before returning them to the mesocosm system. Prey mimics 274 

were euthanized by freezing. 275 

 276 

Analysis of time-lapse image sequences 277 

Activity and response to the prey mimic were quantified by digital analysis of the time-lapse 278 

image sequences from each trial, using the plugin “Manual tracking”, and custom-made 279 

scripts, for the open source image analysis software Image J (1.45S, National Institutes of 280 

Health, USA). Tracking of each individual trajectory during the assessments enabled the 281 

recording of the time and length associated with behaviours here described (see fig. S2 for 282 

examples). A total of 36 image sequences were analysed per assessment (before and after 283 

prey cue addition, n images = 2596), excluding cases where software glitches led to image 284 

capture failure (4 out of 40 assessments were overall null). Each sequence was analysed three 285 

times, to allow the tracking of each individual in the group of three, per assessment. The four 286 

outcome variables (basal activity, i.e. speed; response time (to reach prey); foraging distance; 287 

foraging cost) were analysed separately using multiple regression and a log-likelihood based 288 

stepwise regression analyses for model selection in R. The CO2 concentration and 289 

temperature were considered as main effects and up to first order interaction, and tidal 290 

condition at the beginning of each assessment was considered as a covariate. Normality of 291 

residuals and homoscedasticity were verified by observation of residual distributions. 292 

 293 



15 

 

Determination of metabolic rates 294 

 For heterotrophs, metabolic rate is determined using the rate of oxygen consumption as a 295 

proxy. This was measured within two weeks of the behavioural assessments, using stop-flow 296 

respirometers (volume 278 mL). Each respirometer contained 20 glass beads (diameter = 297 

1cm) to provide a replica substrate and reducing stress and activity levels. Magnetic stirrers 298 

were used to prevent the formation of oxygen partial pressure (pO2) gradients within the 299 

respirometers. The stirrers were separated from the animals by a perforated platform. 300 

Eighteen respirometers were used, and these were divided in to three sets of six; each set was 301 

supplied with fully oxygenated seawater from a reservoir, at the desired temperature and CO2 302 

level matching the respective mesocosm exposure conditions. During the assessment period 303 

the temperature was controlled using a recirculating water bath (Grant Cambridge Ltd, 304 

Cambridge, UK) monitored using a K type thermocouple inside the respirometers (Omega, 305 

HH806AU, Manchester, UK). This provided a water jacket housing the respirometers and 306 

cooling coils in the reservoirs. The CO2 of each reservoir was controlled using the same air 307 

and carbon dioxide gas mixes which were used to supply the mesocosm from which the 308 

animals had been taken. Sea water was filtered (2.22 µm) and preliminary experiments 309 

showed no significant decline in pO2 within the respirometers in the absence of the animals. 310 

Each group of three snails, previously used for the behavioural assessments, was placed in a 311 

separate respirometer and allowed to settle under the experimental conditions for 1 h. The 312 

respirometers were covered with an opaque plastic sheet to reduce light and disturbance. 313 

After 1 h, the flow of sea water though each respirometer was stopped and the decline in pO2 314 

within each closed respirometer was determined using an OxySense GEN III 5000 series 315 

oxygen analyser system (OxySense, Dallas, TX), using the method in Rastrick and Whiteley 316 

(2011). Rates of oxygen uptake were calculated as the change in pO2 h
-1

 from the liner least-317 

squares regression of pO2 (mbar) plotted against time (h). This was multiplied by the 318 
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solubility coefficient for oxygen, which was adjusted for salinity and temperature (Harvey, 319 

1955), and the volume of water within each respirometer, taking in to account the volume 320 

taken up by each animal. Whole animal values for M
．

O2 in μlO2 h
-1

 were standardised to 321 

Standard Temperature and Pressure, Dry (STPD) and expressed as μmol O2 h
-1

. Metabolic 322 

rates were standardized by biomass, and analysed using multiple regressions and a log-323 

likelihood based stepwise regression analyses for model selection in R, as before. 324 

 325 

Susceptibility to predators: analysis of shell integrity 326 

MicroCT scans of shells 327 

To investigate possible shell damage associated with experimental treatments four individuals 328 

were randomly selected from the ambient control (380 ppm) and the high CO2 treatments 329 

(1000 ppm) (n=8) at exposure month 14. Individuals were euthanized by immersion in liquid 330 

nitrogen, after anesthesia by immersion in an 8% MgCl solution for 12 hours. Specimens 331 

were further preserved in dry-ice for air freight, and later stored at -80° C until scanning took 332 

place. Images were acquired with a SkyScan 1172 micro-computer tomograph 333 

(http://www.skyscan.be/products/1172.htm) at the Hellenic Centre for Marine Research 334 

(Crete, Greece). The SkyScan uses a tungsten source and is equipped with an 11 PM CCD 335 

camera (4000 × 2672 pixel), with maximal resolution of < 0.8 µm pixel
-1

. Specimens were 336 

scanned with a copper and aluminum filter at 100 kV, with a flux of 100 µA, on full 360° 337 

rotation and at the highest possible camera resolution. Effective voxel size was 5.5 ± 0.3 µm
3
. 338 

Projection images acquired during the scanning process were subsequently reconstructed into 339 

cross sections (*.png format) with SkyScan’s NRecon software which employs a modified 340 

Feldkamp’s back-projection algorithm. Sections were always reconstructed from the total 341 

number of projection images (360°) to maximize detail. Parameters were calibrated between 342 

http://www.skyscan.be/products/1172.htm
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acquired image sets to insure data comparability between individuals – this procedure is 343 

hence forth referred to as inter-calibration. The lower limit of the histogram was set at the 344 

value of the sample surrounding medium during scans (i.e. air).  345 

 346 

Analysis of microCT data 347 

Possible changes in shell density associated with experimental treatments were likely to be 348 

more clearly observed in the growing (or newer) edge of shells. Analysis of shell data was 349 

therefore primarily centred on image slices corresponding to the upper lip area (top line, fig. 350 

S3), where the shell was newer and thinner. This area is henceforth referred to as “lip”. Shell 351 

damage was also likely to be observed on the surface of shells which, in the absence of a 352 

periostracum, were directly exposed to experimental seawater conditions (Rodolfo-Metalpa et 353 

al., 2011). Possible changes to the shell surface were therefore investigated focusing on a 354 

0.08 mm deep layer on the surface of each scanned individual. To achieve this, 10 microCT 355 

slices corresponding to cross-sections of shells were acquired in the same specific regions of 356 

each scanned individual as illustrated in fig. S3. This choice insured a good and comparable 357 

coverage of the whole shell between individuals. In each slice, a 15 pixel thick region of 358 

interest below the surface of the shell was hand drawn in Image J (pixel size = 5.5 µm). This 359 

region is referred to as the “shell surface” in subsequent analysis. The density of the shell 360 

surface in each individual was calculated using as a proxy the mean pixel intensity in that 361 

region (0 to 255, with high values indicating higher density), across all ten 2D slices, which 362 

had been inter-calibrated during reconstruction. The density of the shell in the lip was 363 

calculated in the same way, using the whole 2D slice corresponding to that region. 364 

Differences in density in each of the parameters (lip and shell surface) between controls and 365 

animals from the 1000 ppm CO2 treatment were compared using one-tailed t-tests. The tests 366 
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assumed normality and equal variances, as verified via Shapiro-Wilk tests and plotting of 367 

data dispersion, and used the alternative hypothesis that shell density in the high CO2 368 

treatment was lower. All data analyses were carried out in R. 369 

 370 

Projection of ecosystem-level changes in biogeography  371 

The size-spectrum dynamic bioclimatic envelope model (SS-DBEM) described in Fernandes 372 

et al. (2013) was used here to project possible changes in biogeography associated with ocean 373 

acidification and warming. The SS-DBEM couples the DBEM described by Cheung et al. 374 

(2011) with a size-spectrum model for resource use based on primary production and 375 

temperature (Jennings et al., 2008). The SS-DBEM combines a correlative habitat suitability 376 

component with a mechanistic niche component (Kearney &  Porter, 2009) to project 377 

environmental limits to species distributions, as a result of a transference of the realized 378 

species niche (as constrained by the experimental data) to the landscape scale (i.e. the NE 379 

Atlantic). Specifically, the correlative habitat suitability component of the model maps out 380 

species occurrence to environmental patterns (temperature, depth, substrate type etc.) based 381 

on global databases (e.g. sealifebase.org). We complemented this with N. lapillus 382 

distributional data from the Marine Biological Association of the UK’s MarClim project 383 

(Mieszkowska et al., In press). These were used to define the environmental tolerance range 384 

for the species (i.e. its habitat preference profile) based on a set of “filters”, including habitat 385 

type, depth and latitudinal limits (Close et al., 2006). Current geographic distribution is 386 

predicted based these filters. Temperature was not used here as a predictor of current 387 

distribution because it was later used to estimate the temperature tolerance and preference of 388 

the species (Cheung et al., 2008). On its own, this approach is limited because it does not 389 

enable a distinction to be made between direct causality between environment and species 390 
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distribution, indirect mediation via biotic interactions, and direct response to non-modelled 391 

variables co-linear with those considered by the model (Kearney &  Porter, 2009, Mac Nally, 392 

2000). Therefore, in addition, the model also includes a mechanistic niche component by 393 

which the projected species distribution becomes limited by more factors than just the 394 

distribution of suitable habitat. In the mechanistic niche component, change in distribution 395 

and relative abundance (and biomass) caused by changing environmental conditions are 396 

simulated by a spatial population dynamic model (Cheung et al. 2011). The spatial and 397 

temporal dynamic model is dependent on a set of physiological and ecological response traits, 398 

constrained in this case by responses to acidification and temperature observed during the 399 

mesocosm experiments, which are used to determine persistence at the meta-population level. 400 

In the present study, the model considered changes in resting oxygen consumption (a proxy 401 

for metabolic rate), adult mobility (i.e. speed, as a proxy for dispersal potential), growth, 402 

length-weight relationship (a proxy for condition), adult and juvenile mortality, and larval 403 

dispersal, as measured in response to temperature and acidification. These traits were 404 

calculated per treatment level. Change in resting oxygen consumption with temperature (eV) 405 

and mobility (i.e. cm.h
-1

) were calculated at 14 months based on the mesocosm measurements 406 

already described. Mortality of adults and juveniles (F1 hatched in the laboratory from the 407 

same adults described above) was calculated as an overall % per treatment, based on the 14 408 

month mesocosm experiments. Larval dispersal was considered to be negligible as N. lapillus 409 

is a direct developer. Growth rates were calculated as the difference (%) in weight increment 410 

(g day
-1

) between each treatment and the control (ambient temperature and 380 ppm of CO2), 411 

superimposed on the von Bertalanffy growth equations for Nucella in Selin (2010). Growth 412 

and length-weight relationships were calculated here using data generated by a parallel 12 413 

month experiment on individuals of the same wild population, which used the same 414 

experimental treatment levels and supporting equipment, carried out in the mesocosm 415 
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facilities of the Marine Biological Association of the UK. A schematic diagram of the model 416 

structure and input parameters is illustrated in figure S4. 417 

The environmental forcing for the SS-DBEM (i.e. the environmental parameters, or habitat 418 

conditions) was projected for the NE Atlantic region using two spatially and temporally 419 

resolved biogeochemical models: the Proudman Oceanographic Laboratory Coastal Ocean 420 

Modelling System – European Regional Seas Ecosystem Model (POLCOMS-ERSEM), and 421 

the Nucleus for European Modelling of the Ocean – Model of Ecosystem Dynamics, nutrient 422 

Utilisation, Sequestration and Acidification (NEMO-MEDUSA 2.0) documented in Artioli et 423 

al. (2014) and Yool et al. (2013). POLCOMS-ERSEM has a track record for performance in 424 

regional seas (Allen &  Somerfield, 2009, Shutler et al., 2011), while NEMO-MEDUSA is a 425 

large-scale global ocean model. Together, they therefore provided a complimentary approach 426 

to the simulation of biogeochemical conditions. The two models were parameterized 427 

according to three global emissions scenarios (IPCC, 2007, IPCC, 2013) to simulate three 428 

possible futures for Nucella. The future emissions scenarios considered were: 1) AR4 A1B 429 

with a CO2 equivalent around 700 ppm (“business-as-usual” , IPCC, 2007); 2) AR5 RCP2.6 430 

with a CO2 equivalent around 400 ppm (“lower emissions” , IPCC, 2013); and 3) AR5 431 

RCP8.5 with a CO2 equivalent around 1250 ppm ("higher emissions” , IPCC, 2013). In each 432 

case, the SS-DBEM was forced for a specific 20 year biogeochemical simulation 433 

corresponding to present time (1981-2000) and end of the century (2081-2100). The first five 434 

year spin-off period was discarded from further analysis while the subsequent fifteen years 435 

were averaged to account for the expected inter-annual natural variability. The 436 

biogeochemical model runs simulate not only the landscape-scale habitat conditions 437 

(including temperature and pH) but also the resources available in each point in time and 438 

space. I.e., primary production (as simulated by the biogeochemical models) and the 439 

predicted habitat suitability from other environmental factors were used as a proxy for the 440 
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carrying capacity of the ecosystem at each point. For a set group of neighbouring points at 441 

each specific time point, the SS-DBEM simulates that Nucella will use more resources from 442 

primary production where habitat is more suitable. The SS-DBEM was parameterized using 443 

the measured changes in Nucella traits in relation to the CO2 concentration and temperature 444 

levels observed in the experimental treatments. When no statistically significant differences 445 

were found between treatments, model parameters were calculated as the overall mean value 446 

for each measured trait.  447 

In each of the three IPCC scenarios used, we ran the SS-DBEM three times, allowing model 448 

parameters to vary according to acidification, warming or both effects, using all of our 449 

experimental trait data simultaneously. These runs were compared to highlight potentially 450 

distinct effects of acidification and warming in the diversity of parameters considered by the 451 

SS-DBEM. The final SS-DBEM model grid had a 0.5 
o
 latitude by 0.5 

o
 longitude resolution 452 

(approximately 56 km
2 

depending on latitude). Detailed descriptions of the models used are 453 

found in Cheung et al. (2011) and Fernandes et al. (2013).  454 

Results  455 

 456 

Impacts on resting oxygen consumption and basal activity 457 

Ocean acidification and warming had distinct effects in the resting oxygen consumption of 458 

Nucella (here used as proxy for metabolic rate). At ambient temperature, resting oxygen 459 

consumption (MO2) decreased steadily with increased CO2 exposure, but in warm treatments 460 

this parameter was significantly higher and invariable with CO2 concentration: MO2 = 16.95 461 

+ 6.33 x temperature - 0.01 x CO2, R
2
 = 78. 49 % with F 2,25 = 45.63 and p < 0.01, fig. 1a. 462 

This pattern of impact was only partially mirrored in individual basal activity (i.e. speed, fig. 463 
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1b, for which the univariate regression using metabolic rate as a predictor yielded R
2
 = 78. 49 464 

%, F 1, 9 = 4.39 and p < 0.10). Acidification in the absence of warming did lead to decreased 465 

activity, but under warming conditions Nucella was as active as in control treatments (Amb 466 

380, fig. 1b) regardless of acidification levels (fig.1b). A significant amount of variability 467 

observed between individuals could not be explained by the experimental treatments (R
2
 = 468 

32.15 %, table I and fig. 1b).  469 

Impacts on predatory behaviour 470 

The impact of experimental treatments on the predatory behaviour parameters measured here 471 

were significant but complex (table I, fig.1c-f). In the presence of food (prey mimic), 472 

foraging time (i.e. “response time”, table I, figure 1c) was highly variable, causing no 473 

significant impact on the mean responses across individuals. Individuals from the worst 474 

acidification scenario were, however, found to cover significantly greater distance to find 475 

food in the absence of warming (“foraging distance”, table I and fig. 1d), and this variable did 476 

not exhibit a clear pattern in other treatments, regardless of temperature. We also found that 477 

the amount of time spent feeding (“handling time”) appeared to trail the increase in distance 478 

covered to find food, despite inter-individual variation. Consequentially, a pattern emerged 479 

when foraging cost was calculated (the ratio of handling time to foraging distance). With 480 

increased acidification, and independent of temperature, an increase in the amount of time 481 

spent feeding exceeded the corresponding increase in distance covered to find prey, leading to 482 

a decrease in foraging cost (figs. 1e and f, p < 0.05 and R
2
 = 52.30 %, table I).  483 

 484 

Impact on susceptibility to predation 485 
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The analysis of the microCT data revealed profound changes in shell morphology concurrent 486 

with acidification (fig.2). Dissolution at the shell apex, irregular definition of whorls and the 487 

disappearance of the natural ornamentation pattern with increased acidification (3D 488 

reconstructions, fig.2) were consistent with a 20-30% decrease in shell density in the shell lip 489 

(t6 = -1.80 and p < 0.10) and in the overall shell surface (t6 = -2.32 and p < 0.05).  490 

 491 

Biogeographical projections for the end of the century 492 

We used a state-of-the-art dynamic bioclimatic envelope model (SS-DBEM) to explore how 493 

the mechanisms highlighted by our species-level experimental results scaled through to the 494 

ecosystem, considering different emission scenarios and model structure. Overall, higher 495 

emissions led to greater reductions in the abundance of Nucella lapillus across all areas 496 

(fig.3). By 2100, the abundance of Nucella in the NE Atlantic shelf coasts would have 497 

decreased as an effect of OAW by 66.9 ± 16.8 % (mean ± SD) across all areas (in relation to 498 

present day), in business-as-usual and higher emissions scenarios (fig.3 a-d and i-l). 499 

Alternatively, abundance could increase marginally in the same period under a lower 500 

emissions scenario (1.22 ± 0.78 %, fig.3e-h). The response of the different species traits (i.e. 501 

model parameters) to variations in each of the stressors considered over space and time 502 

(temperature and CO2, fig. 3 b-c, f-g and j-k), or of their combination (fig. 3 d, h and l) means 503 

that the projected distributional changes are spatially heterogeneous. In the northern UK and 504 

Irish coasts, the projected decrease in abundance associated with OAW (in relation to present 505 

day) is similar for business-as-usual and higher emissions scenarios for 2100 (by 63.58  ± 506 

4.88 %, fig.3d and l), but in all other coasts abundance may fall by an additional 37.06  ± 507 

4.88 % in the worst scenario (fig.3h). In a future where emissions continue to occur in 508 

business-as-usual, the greatest decrease in abundance may occur in the NE coast of the UK 509 
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(fig. 3d), while in a higher emissions scenario, areas further south would suffer the greatest 510 

impacts (fig. 3l). In some areas of the coastline along the English Channel and in the western 511 

coast of France, smaller changes in the future distribution of Nucella were projected when all 512 

model parameters responded to OAW (right column, fig. 3 d, h and l) than when they 513 

responded to only one of the individual stressors (second and third columns, fig. 3 b-c, f-g 514 

and j-k), at and below business-as-usual emissions levels. In other areas, like the NE of 515 

England, the reverse was true, at and above business-as-usual emissions levels (fig. 3). The 516 

SS-DBEM projections also indicated that resource availability may be an important factor 517 

determining the extent of distributional changes over time. Specifically, the projections 518 

indicated that, with the exception of the most extreme higher emissions scenario, Nucella 519 

would likely be able to meet increased energetic demand associated with OAW in areas with 520 

high productivity, such as the German and Dutch coasts (fig.3d and l). However, in less 521 

productive areas, like the East coast of England, resource depletion may prevent persistence 522 

under OAW. 523 

 524 

Discussion 525 

This study shows how environmental stressors impact the ecology of individual species 526 

across several layers, and that these are not easy to summarize. Using a diverse range of 527 

experimental analyses, we provide an integrated insight into how multi-stressor impacts may 528 

be complex and distinct from those expected by the sum of single stressor impacts. 529 

Temperature appeared to be the key factor regulating basal physiology and activity, but when 530 

predator-prey interactions were considered, acidification appeared to play an important role 531 

too. Furthermore, our macro-scale modelling indicated that the aggregated responses 532 

measured at the individual level may lead to substantial change to the future distribution of 533 
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Nucella in the NE Atlantic region by 2100, with concomitant impacts for the dynamics of 534 

these rocky-shores. This distributional impact will depend on the magnitude of environmental 535 

change (i.e. emissions scenario considered). It will also depend on the future distribution of 536 

resources, and on local variation of particular stressor combinations acting on many aspects 537 

of Nucella ecology together.  538 

 539 

 540 

Individual level responses 541 

Our results on basal activity and resting metabolic rate lend support to the perspective that 542 

animals are able to improve survival under adverse conditions caused by acidification alone 543 

by reducing metabolism (Calosi et al., 2013, Reipschläger et al., 1997) and specifically during 544 

periods of zero energy gain (i.e. rest, Brown et al., 2004). However, temperature appeared to 545 

have an overriding effect on both of these parameters, as with concurrent warming, no effect 546 

of acidification was apparent. Warming increased mean resting metabolic rates and lead to 547 

variable activity levels, regardless of the exposure to different levels of acidification used in 548 

this study. After fourteen months of warming, increased metabolic rates in Nucella may 549 

indicate an increase in energy demand to sustain basic cellular functions, which may lead to 550 

trade-offs by which, at this stage, less energy may be available to other non-vital functions 551 

(like reproduction). The identification of exactly which of those individual processes are 552 

negatively impacted by potential trade-offs would however have required further 553 

investigation. Variability in activity (a proxy for overall performance) may reflect inter-554 

individual differences associated with higher maintenance and repair costs, as seen by others, 555 

when metabolic rates are high (Calosi et al., 2013). Both results indicate that the individual 556 

level impacts of ocean acidification are significantly different when warming was also 557 
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considered, illustrating how responses to multi-stressor environments cannot be predicted 558 

from the analysis of individual stressor impacts alone.  559 

 560 

Good prey, bad predator: bad news for rocky-shore communities 561 

We expected that Nucella would require more time to find prey with increased acidification, 562 

as individuals were significantly less active in these treatments. However, we found that the 563 

time needed to find food did not increase with acidification. Alternatively, we found that far 564 

greater distance was covered to find food in the worst acidification scenario, despite of 565 

temperature. Greater foraging distance may be indicative of a lowered ability of Nucella to 566 

locate food when CO2 concentration was high, consistent with limited chemo-sensory 567 

function observed in polychaetes (Schaum et al., 2013), crabs (de la Haye et al., 2012) and 568 

fish (Cripps et al., 2011, Dixson et al., 2010, Johannesen et al., 2012) exposed to 569 

acidification. We measured foraging cost (the ratio of foraging distance to prey handling 570 

time) as a means to determine whether, after 14 months, predatory behaviour had changed to 571 

compensate for this possible chemo-sensory limitation. We found that, overall, foraging cost 572 

decreased with increased acidification given that a concurrent increase in the observed 573 

amount of time spent feeding (i.e. prey handling time) far exceeded the corresponding 574 

increase in distance covered to find prey, with and without warming. Thus, the predatory 575 

behaviour of Nucella did appear to change after 14 months in a way that is consistent with a 576 

strategy to cope with a higher energetic expenditure associated with finding food (i.e. greater 577 

foraging distance) in acidified conditions, possibly triggered by limited chemo-sensory 578 

function. Thus, when predatory behaviour was considered, acidification appeared to be a 579 

more important regulatory factor than temperature. Considering only the responses measured 580 

in the absence of a prey mimic (i.e. resting metabolic rate and basal activity), we could have 581 
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over-looked this potentially significant survival strategy, and the potentially important role of 582 

ocean acidification in the overall ecology of Nucella in a near-future ocean.  583 

 584 

Changes in chemo-sensory function and predatory behaviour have implications also for the 585 

susceptibility of N. lapillus to predators. This species is known to shorten the amount of time 586 

spent foraging outside of refuges, feeding less and choosing to feed on prey in secluded 587 

crevices, in the presence of predators (Trussell et al., 2003). This predator avoidance 588 

behaviour has also been observed in other gastropods, even when exposed to acidification 589 

(Manríquez et al., 2013). Predator avoidance behaviour is, however, not compatible with a 590 

need to increase feeding time to compensate the apparent higher energy expenditure 591 

associated with finding prey for a chemo-sensorially impaired Nucella. It is thus possible that 592 

the presence of predators in a community context may inhibit Nucella from developing the 593 

predatory behavioural modifications we observed in OAW conditions in our experiments. Or, 594 

if such modification of Nucella predatory behaviour should develop, it may lead to increased 595 

mortality by predation. Additionally, the analysis of microCT shell data indicated 596 

significantly decreased shell density in acidified treatments, which may be indicative of 597 

greater susceptibility to physical damage as a consequence of encounters with predators. 598 

Along with shell morphology, shell robustness is a key defence of Nucella (and other species, 599 

McDonald et al., 2009) against crushing predators like crabs. In fact, stronger shells correlate 600 

with higher survival rates in Nucella because they require a greater energetic investment and 601 

longer handling time for breakage, both of which tend to lead the crabs away, in search of 602 

easier prey (Hughes &  Elner, 1979). Thus, together, these two results paint a bleak future for 603 

Nucella, and suggest that significant changes may occur in temperate rocky-shore 604 

communities as a consequence of OAW. This is because Nucella and its predators exhibit 605 

significant influence on the abundance of mussels and canopy forming algae (Trussell et al., 606 
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2003 and references therein), both of which are habitat-forming species that have a regulating 607 

role in controlling rocky-shore biodiversity (Bulleri et al., 2002, Seed, 1996). Our findings 608 

agree with others that also found evidence for the relevance of nervous-system level impacts 609 

of ocean acidification for predator-prey interactions in rocky-shores (Watson et al., 2014), but 610 

contrast with Landes & Zimmer (2012), who found no change in predator-prey interactions 611 

with OAW in a similar ecosystem. Long-term studies of the kind presented here are resource 612 

intensive, but are crucial to understand the importance of bottom-up and top-down 613 

mechanisms for the propagation of species-level impacts of climate change to community 614 

level. However, more conclusive insights might have been obtained in the present study if 615 

both prey and predator of Nucella had also been maintained in the same exposures, thus 616 

unravelling how their own species-level responses to OAW would have modified the 617 

predator-prey interactions. Such long-term, multi-stressor, multi-species studies will 618 

significantly help drive the field in the future, by helping to elucidate the true impacts of 619 

climate change in complex community settings.  620 

 621 

Ecosystem-level considerations 622 

Our results, combining individual based measurements, predatory behaviour, susceptibility to 623 

predation and modelling, suggest that OAW may lead to substantial, non-additive and 624 

complex changes in community dynamics of NE Atlantic rocky-shores within the next 100 625 

years. However, despite its achievements, this study identifies the challenge of predicting 626 

ecosystem level climate change impacts based on experimental studies that consider only 627 

single responses of individual species in isolation. Different stressors appeared to have 628 

greater relevance or impacts in different aspects of Nucella ecology, indicating that climate 629 

change impacts species across many different levels, but that these responses do not 630 
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necessarily follow the same trends. Our results, however, provide a more realistic 631 

representation of the true ecosystem level impacts associated with Nucella, because we 632 

combined a range of species and community level processes simultaneously, and summed 633 

effects were estimated using a complex modelling framework. 634 

 635 

The importance of local scale forcing on these processes, as revealed by the analysis of the 636 

SS-DBEM projections, advises caution about the extrapolation of experimental findings on 637 

their own to investigate large scale questions, particularly when studies consider only a small 638 

number of individual level responses. For example, it would have been incorrect to assume, 639 

based only on the presently observed decrease in foraging-cost for Nucella with increased 640 

acidification, that the distributional range of this species will expand because average oceanic 641 

CO2 concentrations are and will continue to rise. As we show, large-scale distributional 642 

changes will occur as a result of multi-stressor patterns and resources changing locally across 643 

the landscape, in a heterogeneous way. Therefore, projection of ecosystem-level 644 

consequences of climate change requires a better integration of both macro-scale and local-645 

scale information, about biotic and abiotic drivers, and species ecology. While the SS-DEBM 646 

quantifies possible impacts on the use of resources available in the environment primarily as 647 

described by size-spectrum theory (Jennings et al. 2008), it does not account for the inter-648 

specific relationship between Nucella, its prey and predators explicitly analysed here, and the 649 

responses of such relationships to climate change. On the other hand, our experiments 650 

indicate that the impact of acidification on the predatory behaviour of Nucella could have a 651 

significant role also in its ability to acquire food. While the present study represents a 652 

significant development in the use of individual level experimental data in an ecosystem level 653 
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application, future research may require future model developments that can accommodate 654 

such specific information. 655 

 656 

The parameterization of the SS-DBEM with experimental data is challenging, requiring 657 

expertise in a diversity of subject areas to enable parameter calculation (physiology, 658 

behaviour, population dynamics) in addition to that required to run the model. It is the 659 

research taking place within those disciplines, with single and multi-stressors, that drives our 660 

understanding of the mechanisms of impact that the model aims to capture. Thus, good 661 

communication between the modeller and specialists in each of those fields of research is 662 

paramount to successful model parameterization, insuring that both model behaviour and 663 

assumptions taken are plausible. For example, our projections are based primarily on 664 

experimental and observational information gathered within one species population, which is 665 

likely adapted or acclimated to a specific set of local environmental conditions (Calosi et al., 666 

2008). We considered whether it was plausible to extrapolate this knowledge to the larger 667 

geographical area considered in our simulations. The reason for this is that it is possible that a 668 

different population of the same species could have shown some degree of variability in the 669 

responses we measured (Findlay et al., 2010 and references therein). Because we measured a 670 

large number of ecologically meaningful parameters, it was considered that small differences 671 

in specific responses between populations would be diluted in our integrated analysis, and 672 

thus that our extrapolation was reasonable. However, for different species and simulations, if 673 

those differences are known and sizeable, then they should be considered.  674 

 675 



31 

 

The diversity of data used here is becoming increasingly available, given that the need for 676 

long-term, multi-species, multi-stressor experimental climate change research is gaining 677 

recognition. Our inter-disciplinary approach integrates this knowledge, providing a more 678 

holistic assessment of the effects of OAW than can be derived from assessments carried out 679 

within individual disciplines. In doing so, DBEMs also enable the testing of climate impact 680 

scenarios on marine species in the context of the ecosystem, at scales that are more relevant 681 

to management than those at which empirical and experimental science tend to operate (e.g. 682 

decades c.f. a few years). Furthermore, changes in the distribution of individual species (as 683 

modelled here for Nucella) can be done in a multi-species context, to predict how climate will 684 

impact marine biodiversity across the land-scape (Cheung et al., 2009). Biodiversity loss is 685 

perhaps an issue more easily communicated to managers and stake-holders of the marine 686 

environment than, for instance, the physiological impacts of OAW on specific species. As 687 

biodiversity underpins regulating, production, provisioning and cultural ecosystem services 688 

(Armstrong et al., 2012, Raymond et al., 2009), this approach may be a successful route to 689 

scale experimental climate change research to the wider socio-economic context. Thus, as 690 

noted also by others (Metcalfe et al., 2012, Norman-López et al., 2013) it is timely for 691 

physiologists, ecologists and numerical modellers to take advantage of such integrative routes 692 

to increase the impact of experimental climate change science, beyond speciality fields.  693 
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Supporting Information 871 

Table SI: Carbonate chemistry parameters (mean ± standard deviation) measured during the mesocosm experiments, averaged across replicate 872 

tanks. AT: total alkalinity; pH: total hydrogen ion concentration; Temp: temperature; Sal: salinity; DIC: total dissolved inorganic carbon; pCO2: 873 

the partial pressure of CO2 in seawater; Ω Calc: the saturation state of seawater for calcite; Ω Arag: the saturation state of seawater for aragonite; 874 

HCO3
-
: the bicarbonate ion concentration; CO3

2-
: the carbonate ion concentration. 875 

 876 

380 Ambient 2205.75 ± 83.69 8.03 ± 0.08 11.78 ± 2.01 34.82 ± 0.32 2064.42 ± 70.45 540.64 ± 121.15 2.57 ± 0.52 1.64 ± 0.33 1934.08 ± 66.61 107.88 ± 21.81

750 Ambient 2166.35 ± 82.61 7.93 ± 0.09 11.62 ± 2.29 34.80 ± 0.28 2064.45 ± 83.06 689.44 ± 158.88 2.03 ± 0.37 1.30 ± 0.24 1950.59 ± 82.30 85.25 ± 15.59

1000 Ambient 2306.77 ± 9.52 7.79 ± 0.08 11.48 ± 2.26 34.88 ± 0.30 2247.13 ± 85.38 1020.19 ± 196.43 1.62 ± 0.27 1.03 ± 0.17 2136.45 ± 83.45 68.03 ± 11.23

380 Warm 2252.24 ± 111.75 8.00 ± 0.09 13.98 ± 2.31 35.00 ± 0.25 2109.48 ± 133.69 611.64 ± 165.74 2.63 ± 0.43 1.70 ± 0.28 1975.26 ± 139.58 110.44 ± 18.09

750 Warm 2228.72 ± 114.03 7.90 ± 0.10 13.95 ± 2.27 35.05 ± 0.24 2124.05 ± 130.11 791.48 ± 232.61 2.12 ± 0.42 1.36 ± 0.27 2004.29 ± 131.76 89.11 ± 17.69

pCO2 (µatm) Ω Calc Ω Arag HCO3
- 
(µmol.kg

-1
) CO3

2-
 (µmol.kg

-1
)DIC (µmol.kg

-1
)nominal treatment AT (µmol kg

-1
) pH Temp ( 

o
C) Sal (psu)
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 877 

Figure S1: Temperature variation at the L4 station in the Plymouth Sound, and in our 878 

experimental treatments, over the duration of the mesocosm exposures. 879 
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881 
Figure S2: Activity and predatory behaviour assessments. Left panel showing the trajectory 882 

of an individual (dotted line) from the bottom of the tank to the water line, during an activity 883 

assessment at ambient temperature and high CO2 (1000 ppm). The speed of the first 884 

individual to reach the waterline in each assessment was taken as a proxy for basal activity. 885 

Centre panel shows the trajectory of an individual in an ambient temperature and medium 886 

CO2 treatment (dotted line) after the addition of a prey mimic to the tank (black, bottom left). 887 

This individual has failed to find the prey mimic. Right panel shows individuals handling the 888 

prey mimic during predatory behaviour assessments at ambient temperature and (top to 889 

bottom) 380, 750 and 1000 ppm of CO2. 890 
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 892 

Figure S3: Micro-CT data extraction. Position (left, lines) of the ten shell slices (right, raw 893 

data) acquired with microCT and analysed in the estimation of shell surface density. Top line 894 

indicates the position of the slice (top right) used for the calculation of shell lip density. 895 
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 897 

 898 

Figure S4: Schematic diagram of the SS-DBEM structure, indicating which parameters were 899 

estimated based on experimental and observational data, in the present study. Based on 900 

Fernandes et al. (2013) and Cheung et al.(2011) . * Please refer to text for detail about growth 901 

calculations. 902 

 903 

 904 

  905 
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Tables 906 

 907 

Table I: Regression models for responses of activity and predatory behaviour to experimental 908 

treatments, after fourteen month long mesocosm exposures to ocean acidification and 909 

warming (S.I. 2). Model selection was carried out using a log-likelihood based stepwise 910 

procedure. “NA” model structure indicates response variables for which none of the 911 

experimental factors and covariate considered provided a better fit than the null model. “df”: 912 

degrees of freedom. 913 

  Variable Model structure df F p R
2
 (%) 

 

Basal 

activity 

 speed CO2 concentration 2, 22 5.21 < 0.05 32.15 

 

Predatory 

behaviour 

response 

time 

NA 24 0.00 > 0.05 NA 

 

foraging 

distance 

CO2 concentration 

x tide 

3,23 4.99 <0.01 39.41 

 

foraging 

cost 

~ CO2 

concentration 

2,9 4.93 <0.05 52.30 

         

* Animals only actively sought food at high tide. 914 
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Figure Legends 916 

Figure 1: Effects of ocean acidification and warming on individual level responses (a and b) 917 

and predatory behaviour (c-f) after fourteen month long experimental exposures.  918 

Figure 2: Micro-CT reconstructions of Nucella lapillus shells. Top panel: 3D reconstructions 919 

of individuals from control treatments (top row), exhibiting normal, reticulated shell 920 

ornamentation. Bottom row shows individuals from the most extreme acidification treatments 921 

exhibiting loss of natural ornamentation pattern, worn apex and shallow whorl definition 922 

(arrows). Bottom panel: 2D detail of inter-calibrated cross-sections of the lip of the shell of 923 

control individuals (top row) and from ambient 1000 ppm CO2 treatment (bottom), using a 16 924 

colour mask to enhance differences in shell density. Warm colours indicate high density 925 

materials (yellow) and cold colours (blue) indicate low density. 926 

Figure 3: SS-DBEM biogeographical projections for Nucella lapillus abundance in the 927 

present (1986-2000, left, a, e, and i); and future (2086-2100, all other columns), when model 928 

parameters are adjusted to respond to changes in temperature (second from left, b, f and j), 929 

ocean acidification (third from left, c, g and k) and both (right, d, h and l). The colouring of 930 

the plots is the fifteen year average within each cell, indicating abundance standardized 931 

relative to the present in scenario A1B (a), varying from 0 (white) to 1 (sky blue). The 932 

numbers plotted in red are the % change in Nucella lapillus abundance in the future scenarios 933 

in relation to the present distribution in each region (red lines), when model parameters 934 

respond to acidification and warming simultaneously. Rows correspond to model runs using: 935 

POLCOMS-ERSEM 4th IPCC special report emissions scenario A1B “business-as-usual” 936 

(top row, a-d); and NEMO-MEDUSA 2.0 using the 5
th

 IPCC special report emissions 937 

scenarios AR5 RCP2.6 “lower emissions” (second row, e-h) and AR5 RCP8.5 “higher 938 

emissions” (bottom row, i-l).  939 
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