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1. Summary

Elasmobranchs represent important components of marine ecosystems, but they can be vulnerable to
overexploitation. This has driven investigations into the population genetic structure of large-bodied
pelagic sharks, but relatively little is known of population structure in smaller demersal taxa, which
are perhaps more representative of the biodiversity of the group. This study explores spatial population
genetic structure of the small-spotted catshark (Scyliorhinus canicula), across European seas. The results
show significant genetic differences among most of the Mediterranean sample collections, but no
significant structure among Atlantic shelf areas. The data suggest the Mediterranean populations are
likely to have persisted in a stable and structured environment during Pleistocene sea-level changes.
Conversely, the Northeast Atlantic populations would have experienced major changes in habitat
availability during glacial cycles, driving patterns of population reduction and expansion. The data also
provide evidence of male-biased dispersal and female philopatry over large spatial scales, implying
complex sex-determined differences in the behaviour of elasmobranchs. On the basis of this evidence,
we suggest that patterns of connectivity are determined by trends of past habitat stability that provides
opportunity for local adaptation in species exhibiting philopatric behaviour, implying that resilience of
populations to fisheries and other stressors may differ across the range of species.

2. Introduction

Molecular genetic markers have had a profound impact in conservation and management [1-3]. They
allow inferences to be made about the scale over which genetic connectivity occurs [4], the behavioural
mechanisms leading to gene flow [5], the estimation of effective population sizes [6] and how historical
processes have impacted on populations [7]. This information has importance in terms of potential for
local adaptation [8,9], but is also valuable for sustainable management and conservation of these natural
resources [10-13]. In fisheries management, genetic tools can help to identify discrete populations which
represent demographically independent stocks that require individual management to ensure fisheries
sustainability [10,14].

The effects of marine overexploitation have been clearly shown by severe declines in many shark
species [15]. Understandably, much of the work investigating genetic diversity and population structure
of elasmobranchs has been focused on the large pelagic sharks that are considered particularly vulnerable
to exploitation in high seas fisheries [16,17]. However, these species represent a small fraction of the
biodiversity of the group. The small-spotted catshark (Scyliorhinus canicula L., 1758) is a relatively small
demersal species belonging to one of the largest families of sharks, the Scyliorhinidae. It is generally
considered to be the most abundant catshark in European shelf seas [18] and occurs from Norway and
the British Isles, south to Senegal, including the Mediterranean Sea [19]. It is an oviparous species that
breeds most of the year and is relatively fecund for an elasmobranch. It has remarkable variation in
reproductive parameters, but in British waters it has been shown to lay between 29 and 62 eggs from
November to July each year [18,20]. In the Atlantic, it is often caught as by-catch in demersal fisheries,
but its commercial importance is growing, particularly through its use as whelk bait [21], and it is also
significant for recreational fishing in some regions [22]. In the Mediterranean, catsharks have been fished
since ancient times, as documented by mosaics from the Roman age [23], and S. canicula is still targeted
for consumption today [24]. Recent studies have shown very dramatic localized reductions in abundance
[25]. For example, in the Adriatic Sea it has been estimated that the species has declined in abundance by
up to 90% since the 1940s [26].

Investigations of elasmobranch population structure focusing on wide-ranging pelagic sharks have
often revealed genetic differentiation over broad inter- or intra-oceanic scale [27,28]. By contrast, work on
coastal and demersal species suggests they can have more highly divided population structure, which
has implications for management and conservation [29,30]. Scyliorhinus canicula has a range of traits
associated with a low dispersal potential, including internal fertilization and deposition of demersal
eggs. In addition, mark-recapture studies suggest adults do not generally make long migrations [31].
These factors could potentially lead to population genetic structure in this species, a concept that has
some support from apparent differences among populations in growth rates, habitat/depth preference
and reproductive biology that could have arisen from local adaptation [20,25]. Indeed, populations
within the Mediterranean show such marked changes from those in the Atlantic that they have
historically been suggested as a different subspecies [32,33]. Similarly, a more recent study of sexual
dimorphism in S. canicula noted significant morphological differences in dentition between west African,
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Mediterranean and west European populations, indicating the west African group could represent a
distinct taxon [34].

Documented sex-biased dispersal and philopatry have also been shown to have serious effects
on elasmobranch population structure. Female sharks generally make far greater investment in
reproduction than males, potentially leading to discrepancies between optimal male- and female-fitness
strategies, and generating sex-specific differences in behaviour [27,35]. Evidence from a growing number
of studies suggests female philopatry in sharks may be widespread [36]. This is also significant as sex-
biased differences in movement behaviour could potentially lead to sexual segregation in sharks, and in
turn affect the sustainability of marine harvesting [37].

Molecular data have the power to infer historic processes, such as population expansions or
contractions, locations of refugia and patterns of recolonization [38]. Inferences of this type are
particularly enlightening within Northeast Atlantic marine ecosystems, as organisms in this region have
been significantly impacted by the Pleistocene glacial cycles [39]. During the last glacial maximum, about
20000 years ago, ice sheets dominated the majority of the United Kingdom and Ireland, while permanent
sea ice may have extended as far south as the Bay of Biscay [40,41]. Therefore, the distributions of marine
organisms might have been forced southwards into refugia, including the Mediterranean, north African
coast and the Iberian Peninsula [42-44]. Along the Atlantic coast, there is also evidence for refugia
further north and much closer to the ice sheets [43,45,46]. Subsequently, as the ice retreated, organisms
were able to recolonize the more northerly regions that were previously glaciated. Phylogeographic
investigations of a variety of marine taxa have shown a division between the Mediterranean Sea and
the Atlantic, although the degree and geographical scale of the biogeographic separation varies among
even closely related species [47]. Therefore, it is plausible that these locations also acted as refugia for the
small-spotted catshark.

Here, we test for population genetic structure among populations of S. canicula collected across
European seas. A particular focus is made of the Atlantic-Mediterranean transition, as it is often
considered to be an important phylogeographic break. We also use these data to test for sex-biased
differences in dispersal and philopatry. We discuss the results in the light of published work on the
behavioural ecology of the species, and highlight the conservation and management implications.

3. Material and methods

3.1. Sample collection and DNA extraction

Tissue samples were collected between 2007 and 2011 (with the exception of the Western English Channel
collection site, see below), primarily from research cruises throughout Europe and the Mediterranean
(figure 1; electronic supplementary material, S1). Temporally replicated samples were collected from the
same approximate region of the Western Channel (2003, n = 45; 2008, n = 26; 2010, n = 39). A minority of
samples were also collected at landing or at fish markets, most notably all those from Portugal, Sardinia
and Crete. Genomic DNA was isolated from S. canicula using the Wizard technique (Promega Madison,
WI, USA).

3.2. Microsatellite genotyping

Twelve microsatellite loci, Scan02, Scan03, Scan04, Scan05, Scan06, Scan09, Scan10, Scan12, Scanl13,
Scan14, Scan15 and Scan16 [48], were amplified with the QIAGEN multiplex polymerase chain reaction
(PCR) kit (QIAGEN, Valencia, CA, USA). The protocol followed Griffiths et al. [21], with the following
modifications. Fluorescent NED primers were used to ensure compatibility with ABI sequencing
platforms, and loci Scan01 and Scan17 were removed from the original multiplex owing to problems
associated with null alleles and PCR artefacts (with Scan04 and Scan10 substituted instead). Allele sizes
were determined using an ABI3500 DNA sequencer, and the STRAND nucleic acid analysis software [49].

3.3. Mitochondrial DNA sequencing

An approximately 900 base pair (bp) section of the mitochondrial DNA (mtDNA) control region was
amplified using the newly designed primers ScyD1pF (ATGACATGGCCCACATATCC) and Scan2R
(TTCTCTTCTCAAGACCGGGTA), using PCR conditions described in Griffiths et al. [50]. PCR products
were cleaned and sequenced by Macrogen (Korea), using the forward primer ScyD1pF, which yielded a
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Figure 1. Sample collection locations, with numbers of individuals analysed (microsatellite/mitochondrial markers). Inset colour scale
reflects sea depth. See table 1for location codes.

shorter region that was used for subsequent analyses. Resulting sequences were checked using BIOEDIT
v. 7.0.9 [51] and aligned with CLUSTALX2 [52].

3.4. Microsatellite data: summary statistics and population differentiation

Patterns of temporal variation at the Western Channel site were examined by calculating pairwise Fst
values between the sampling periods in ARLEQUIN 3.11 [53]. MICROCHECKER [54] was used to check
for scoring issues and the presence of null alleles. Microsatellite summary statistics were calculated in
CERVUS 3.0 [55], except the inbreeding coefficient (Fis), probability of conformity to the expectations
of Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD) which were calculated in
GENEPOP 4.0.7 [56]. Allelic richness was also estimated in FSTAT 2.9.3.2 [57].

Sample collections with inappropriately small sample sizes for estimating allelic frequencies from
microsatellite loci (i.e. from Tenerife n =1 and Norway n =4; figure 1) were removed. Estimation
of pairwise Fst values was conducted in ARLEQUIN using 10000 randomizations, and 95% CI were
estimated across loci in GDA 1.0 [58] with 10000 bootstraps. Sequential Bonferroni corrections were
used to minimize type I errors [59]. Within GENALEX 6.5 [60], Nei’s pairwise genetic distances were
calculated using the default settings and visualized by principal coordinate analysis (PCoA). Mantel
tests were used to test for significant correlations between genetic distances and geographical distances,
also in GENALEX.

A hierarchical analysis of molecular variance (AMOVA) was performed in ARLEQUIN, to test for
significance between groups of sample collections. Data were grouped according to geographical
location, with the following hierarchy: Northeast Atlantic (Scotland, North Sea, Bristol Channel, Western
Channel, Ireland and Portugal) and the Mediterranean (Mallorca, Sardinia, the Adriatic and Crete).

3.5. Microsatellite data: clustering analysis

The complete microsatellite dataset was analysed in the software STRUCTURE v. 2.3.4 [61]. A ‘hierarchical’
approach [62] with multiple rounds of analysis was employed in order to capture the major structure
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within the data. Run-lengths included a 100000 burn-in and 1000000 total length, with five iterations.
The model incorporating sampling locations as prior information was employed and the numbers of
clusters, K, varied between 1 and 12 in each run. The AK method of Evanno et al. [63] was applied to
judge the most likely values of K. In the analysis of each cluster, plots of the absolute values of In Pr(X]|K)
and AK were generated by STRUCTURE HARVESTER [64].

3.6. Mitochondrial DNA: summary statistics and population differentiation

Summary statistics were primarily calculated using ARLEQUIN. Rarefied haplotype richness,
standardized to a sample size of 22, was calculated using CONTRIB 1.02 [2]. Genetic differences among
localities were estimated in ARLEQUIN, using both the genetic distance-based ®st and the frequency-
based mtFst, with significance of differences estimated with 10 000 permutations. A hierarchical AMOVA
was performed in ARLEQUIN, using the same scenarios as implemented with the nuclear markers.
Tamura and Nei's [65] genetic distances were calculated between all sample collections (excepting the
lone African/Canaries sample) using MEGA v. 5.1 [66] and visualized using PCoA in GENALEX. Mantel
tests were used to look for significant correlations between genetic distances and geographical distances,
also in GENALEX.

3.7. Mitochondrial DNA: haplotype network and demographic analysis

A median joining network was used to investigate genealogical relationships between mtDNA
haplotypes with NETWORK 4.6.1.1 [67]. Tajima’s D [68] and Fu’s Fs [69] tests were calculated in
ARLEQUIN [53], with significant negative values indicative of recent population expansion. The
demographic history was also evaluated by mismatch distribution analysis. Typically, a population
of constant size is characterized by a multimodal distribution; alternatively, one that has experienced
expansion usually shows a unimodal distribution [70]. Bayesian skyline plots (BSPs) were generated
in the software package BEAST v. 1.7 [71], and plotted using the upper 95% highest posterior
density. Generally the programme defaults were used, except the HKY + I" +1 mutation model
was selected and the Markov chain Monte Carlo (MCMC) was set between 50 and 200 million
iterations, depending on length required for convergence. A fixed clock was set using a divergence
rate of 0.361% estimated from homologous control sequences from S. canicula and Scyliorhinus
stellaris (AM Griffiths 2010, unpublished data) and the divergence date (22 Ma) from Sorenson
et al. [72]. This is the closest calibration point available, but it has resulted in a comparatively
slow estimate rate of divergence, albeit one broadly similar to those calculated for mtDNA in
other sharks (0.8% [73], 0.67% [74]). It is important to highlight the uncertainty in estimation of
the clock rates, which could have very significant effects on the phylogeographic reconstructions
in the BSP.

3.8. Sex-biased dispersal

Initially, to assess differences between male and female dispersal a test comparing pairwise genetic
distances between populations for microsatellite and mitochondrial data was employed. Specifically,
with male-biased dispersal, lower genetic distances were expected to be present in biparentally inherited
(microsatellite) markers than in maternally inherited (mitochondrial) markers. Following Daly-Engel
et al. [35], paired t-tests in R 2.15.1 were used to compare mtFst calculated using mtDNA haplotype
frequencies and Fsr calculated using microsatellite allele frequencies.

Tests for sex-biased dispersal based on the microsatellite data alone were conducted in FSTAT.
Samples from Sardinia were removed from analyses as no information on sex was available. Five
methods based on differences on the inbreeding coefficient (Fis), fixation index (Fsr), degree of
relatedness, mean assignment indices (mAlc) and variance of the assignment indices (vAlc) between
the philopatric and dispersing groups were used [75]. In principle, unequal levels of gene flow between
males and females would lead to a Wahlund effect, and a heterozygote deficit resulting in a higher Fig
in the most dispersing sex, while also leading to correspondingly lower Fst and relatedness values.
The assignment index statistic indicates the probability of a genotype occurring in a population,
and unequal levels of gene flow between males and females could lead to negative values of the
mAlc in the most dispersing sex (as the distribution is centred on zero), while also increasing the
corresponding vAlc.
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Table 1. Summary statistics across all microsatellite loci. n, sample size; N,, number of alleles; Hy, observed heterozygosity; He, expected
heterozygosity; Rs, allelic richness; HWE, probability of conformance to Hardy—Weinberg equilibrium. The single sample from Africa/the
(anaries is excluded from this table owing to the small sample size. Allelic richness values were calculated after excluding the Norway
sample owing to the small sample size, so rarefaction standardized to the level of North Sea collection (n = 25).

sample collection code n N, Ho He Rs HWE

Norway NOR 4 333 0.6042 0.6161 — 0.9994
Scotlnd s 0 708 0605 06100 602 05828
o T o e ver een o o
o e o P e e P vos
i G W o T e o v
Westen Channel wes mo 6 0630 0689 588 01851
Portugal ................................ o 5 R e e T e
e R R o oo e T o
s an o o o e A i
s on o T T e e Do
G G L T van ey S Ve

4, Results

4.1. Microsatellite data: summary statistics and population differentiation

No significant differences were detected between temporal samples from the Western Channel (pairwise
Fst ranged from less than 0.000 to 0.006 and none were significant at the 99% CI) and all individuals
were grouped together into a single sample collection. The mean observed heterozygosity across all
populations was 0.632, varying between 0.571 (Mallorca) and 0.659 (North Sea). The mean expected
heterozygosity across populations was 0.615, varying between 0.562 (Mallorca) and 0.661 (Portugal;
table 1; electronic supplementary material, S2). There was no evidence of deviation from HWE after
sequential Bonferroni correction (electronic supplementary material, S2). Furthermore, there was no
consistent evidence of scoring issues or null alleles. There were 37 (of 858, 4.3%) significant tests of
LD across sample sites at the 95% CI, none of which remained significant after sequential Bonferroni
correction. Mean allelic richness across loci varied between 5.320 (Mallorca) and 6.200 (Portugal; table 1).
Across all 12 loci, significant genetic differentiation was observed (global Fst = 0.039, p < 0.001). Pairwise
Fst values ranged from —0.005 to 0.070 and were significant for all combinations that included the
Mediterranean sampling sites, while genetic differentiation was absent among all Northeast Atlantic
populations, after Bonferroni correction (table 2).

The PCoA plot of pairwise genetic distance between sample collections clearly separated the Atlantic
and the Mediterranean, but showed a greater level of division among the Mediterranean than the
Atlantic sampling sites (figure 2a). There was a significant association between genetic and geographical
distance across all samples (R* = 0.357, p = 0.002, figure 3a). This was also observed within the Atlantic
(R? =0.333, p = 0.047), but not within the Mediterranean (R* = 0.087, p = 0.383). Hierarchical AMOVA
(table 3) showed significant variation between the Atlantic and the Mediterranean groups (2.09%),
and significant variation among populations within these regions (1.78%), although within population
genetic variation was greatest (96.13%).

4.2. Microsatellite data: clustering analysis

Analysis of the complete microsatellite dataset in STRUCTURE initially divided the individuals into two
clusters (electronic supplementary material, S3). The first cluster included the samples from the Atlantic,
with all individuals demonstrating admixture coefficients showing more than 80% membership to this
cluster, reflecting clear common ancestry. Similarly, individuals from Sardinia, Crete and the Adriatic
also demonstrated admixture coefficients showing more than 80% membership to a second cluster,
suggesting clear division between these two clusters. The Mallorca samples demonstrated some degree
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Figure 2. Principal coordinates analysis of (a) Nei's pairwise genetic distances between sample collections based on microsatellite data,
where axis 1 explains 39.66% and axis 2 explains 18.78% of the variation in the data, and (b) Tamura & Nei’s pairwise genetic distances
between sample collections based on mtDNA data, where axis 1explains 28.22%, and axis 2 explains 13.84% of the variation in the data.
See table Tfor location codes.

of admixture between these groups, exhibiting coefficients with an average 73% membership to the
first Atlantic-dominated cluster and 27% membership to the second Mediterranean-dominated cluster.
Subsequent hierarchical analysis of subsets of the data identified additional clusters corresponding to
sampling locations within the Mediterranean, namely Crete, the Adriatic, Sardinia and a Mallorcan
cluster that also incorporated the single individual from Tenerife. No evidence of genetic subdivision
was found across the Atlantic samples.

4.3. Mitochondrial DNA data analysis: summary statistics and population differentiation

The alignment of 276 partial control region sequences comprised 412 bp, 26 haplotypes and 17 variable
sites (accession numbers: KM873790-KM874065). Haplotype diversity ranged from 0.589 (Crete) to 0.815
(Western Channel), while rarefied haplotype richness ranged from 3.749 (Crete) to 8.322 (Portugal).
Values of nucleotide diversity were low, ranging from 0.002 (Cyprus, Bristol, Scotland, Norway) to
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Table 3. Hierarchical AMOVA of microsatellite (top) and mitochondrial data (bottom).

source of total per cent

variation variation  of total
microsatellite among seas 0.07716  2.09 0.02091
(p = 0.00475)

.........................................................................................................................................................................................

among samples within 0.06568 178 0.01818
seas (p < 0.0000)

ysiiqndizanosjeforsos:

within sample collections 3.54666  96.13 0.03872
(p < 0.0000) :

mitochondrial DNA  among seas 01329 1256 0.12564
(p =0.01772)

among sample collections 016439  18.23 0.20851
within seas (p < 0.0000)

within sample collections 0.62401  69.20 0.30796
(p < 0.0000)

vt st 'y i

Table 4. Mitochondrial DNA summary statistics. n, number of individuals; H,, number of haplotypes; H,, allelic richness; h, haplotype
diversity; 7, nucleotide diversity; s.d., standard deviation is in brackets; D, Tajima’s D value; F, Fu's ; value. *p < 0.05, **p < 0.001,
skokok

p < 0.001.

sample collection code n H, H, h (£s.d.) 7 (£s.d.) )} F

Norway NOR 4 2 — 0.667(+£0.204) 0.002(+0.002) 1.633 0.54
e o e T 676(j:0062) .......... 0002(j:0002) ...... o e
o T L T : 740703(:i:0071) ............ 0003(:i:0002) ....... oo e
outhlreland R 8 6 —  0680(:0109) 0003000 —036 —2350*
TSR T e o 678(j:0054) ........... 0002(j:0002) ....... e e
e e R e 0815(j:0045) ........... 0004(10003) ...... o
Portugal ......................... o T o 805(:&0050) ........... 0004(:|:0 0 3) ....... T
T T W S oo (10070) .......... 0003(10002) ...... Ceos T
o ar L o C 0732(j:0068) ............ 0004&0003) .......... e b
e . e . 630715(:i:0047) ............ 0003(:i:0002) ....... Cese e
e (RE 29 4 3749  0589(£0075) 00030000 078  05%
Cyprus ............................ G S —0600(j:0215) ............ 0002(j:0002) ....... T
e T S 0817(10015) ............ 0004(10003) ...... e

0.004 (Portugal, Western Channel, Sardinia; table 4). Overall, significant genetic differentiation was
observed (global @st=0.308, p < 0.001). Pairwise @st values ranged from —0.146 to 0.600, and were
similar to the mtFst values (table 5). Most pairwise comparisons involving a Mediterranean population
showed significant differentiation, and non-significant results involving Norway and Cyprus should
be considered in the light of low sample size. No significant genetic structure was found among
Atlantic collections.

The PCoA plot of pairwise genetic distance showed the close clustering of the Atlantic sample
collections, whereas the Mediterranean groups appear to be relatively distinct. The Mallorca collection
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Figure 3. Associations between genetic and geographical distance based on (a) microsatellite data, and (b) mitochondrial DNA data.

remained an exception, as it clustered more closely with the Atlantic (figure 2b). There was a significant
association between genetic and geographical distance across all sample collections (R?> =0.129, p =
0.016; figure 3b), but not within the Atlantic (R? =0.039, p =0.348), or within the Mediterranean (R? =
0.149, p =0.167). Hierarchical AMOVA (table 3) showed significant variation between the Atlantic and
the Mediterranean groups (12.56%), and significant variation among populations within these regions
(18.23%), although within population genetic variation was greatest (69.20%).

4.4, Mitochondrial DNA data analysis: haplotype network and demographic analysis

The haplotype network demonstrated that two common haplotypes predominate in the Atlantic, but
are also present in the Mediterranean (figure 4). There was little evidence of population structure in the
Northeast Atlantic, as haplotypes did not appear to assort by sample location. However, a number of
closely related haplotypes were unique to the eastern Mediterranean, supporting the distinctiveness of
the sample collections from this region, particularly those from the eastern basin (Crete and Cyprus).
Demographic analyses showed that the Atlantic sample collections had unimodal distributions with
negative Tajima’s D and Fu’s F values, although only F values related to southern Ireland and Portugal
were significant, providing evidence of a population expansion (table 2; electronic supplementary
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Figure 4. Haplotype network of mitochondrial control region sequences. The sizes of the circles in the network are proportional to the
frequency of the haplotype in the dataset, and are coloured according to the sample collections. Ambiguous links were broken according
to phylogenetic relationships estimated from the consensus maximum-likelihood tree.

material, S4). Sample collections from Sardinia and Crete had positive D and F values and bimodal
distributions, indicating demographic stability. The remaining sample collections generally yielded non-
significant results. The BSP analysis (electronic supplementary material, S5) indicates slowly declining
population sizes within the Mediterranean, with evidence of population growth in the past 100 000-
500000 years (with the exception of the Sardinian sample that shows a recent decline in effective
population size). This contrasts with the Northeast Atlantic, in which the samples generally demonstrate
a more sustained period of much greater population increase, dating back over 500 000-1 250 000 years.

4.5. Sex-biased dispersal

The mtFst was significantly greater than Fst across the sampling area (paired t-test; t = 6.487, p < 0.001;
tables 2 and 5) consistent with male dispersal and female philopatry. In direct comparisons of male and
female microsatellite data, males showed a higher Fig, lower Fst, lower relatedness values, lower mAlc
and higher vAIC, all consistent with male-biased dispersal. However, only Fst and mAlc showed a
significant difference between the sexes (table 6).

5. Discussion

This study represents the most detailed analysis of genetic variation from a species in the largest family of
sharks, the Scyliorhinidae, incorporating samples from a wide trans-European and Mediterranean area.
The results showed high gene flow in the Northeast Atlantic Ocean, a region of connectivity between the
Atlantic and the Mediterranean populations in the western part of the Mediterranean Sea, and genetic
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Table 6. Results of the five tests of sex bias dispersal using microsatellite markers.

sex n Fis For relatedness mAlc vAlc

male 186 0.0203 0.0202 0.0388 —0.91583 11.69206
PR Sy Y R T vo o e
pva S o e o von e

differences among populations across the Mediterranean basin. Indications of male-biased dispersal
and female philopatry were also identified, supporting growing evidence of sex-based differences in
dispersal and behaviour in elasmobranchs [76,77].

A lack of temporal variation in the Western English Channel over an 8-year sampling period
supported the stability in population structure in this region over time, which remains a key factor in
interpreting genetic data. By contrast, the null hypothesis of panmixia in S. canicula was rejected by
analyses for both mtDNA control region sequence and nuclear microsatellite markers when considering
all the sample collections across the Northeast Atlantic and the Mediterranean. This indicates that
traits associated with limited dispersal potential may have played an important role in limiting gene
flow, a finding that is becoming increasingly common in coastal and demersal sharks [13,30]. A
significant pattern of isolation by distance (IBD) was also identified by both sets of markers, primarily
related to significant genetic differences between the Atlantic and the Mediterranean, especially eastern
Mediterranean, populations. Such regional variation could also be linked to ontogenetic differences of S.
canicula, with length and age at sexual maturity attained earlier in the Mediterranean than in the Atlantic
[20,25,33], so that genetic and morphological differences appear to coincide.

The mtDNA data identified two main groups of haplotypes; the first included the highest frequency
haplotypes, central to the network that were predominantly associated with samples from the Northeast
Atlantic and the Balearic Islands. The second includes haplotypes unique to specimens found in central
and eastern parts of the Mediterranean (figure 4). Furthermore, pairwise @st revealed highly significant
differences between biogeographically distinct regions of the Mediterranean: the western Mediterranean,
eastern Mediterranean and Adriatic Sea. Such a trend runs counter to previous studies on elasmobranchs
in these waters, where a lack of divergence has been found [44,78,79]. However, similar patterns of
population subdivision have been described by the only other investigation of S. canicula [23], where
variation within the cytochrome oxidase I gene was analysed from predominantly Mediterranean
individuals. That study did not find evidence of population structure at such a fine geographical
scale, perhaps due to the relatively conservative nature of the protein coding gene region used [80].
Additionally, Barbieri ef al. [23] grouped distant areas of the Mediterranean owing to sample size
restrictions, potentially reducing the resolution of their analysis. Application of microsatellite loci in
the current study also supported evidence of genetic sub-division between S. canicula in the eastern
and western Mediterranean. Indeed, the results suggest differentiation at an even smaller scale, between
sample collections separated by less than 500 km in the western Mediterranean (Balearic Islands and
Sardinia).

The pattern of highly divided population structure across the Mediterranean contrasts very sharply
with results from the Northeast Atlantic. Regardless of the markers used, or the analytical approach,
there was no evidence of significant genetic differences between sample collections originating from
this region. Individuals from Norway and Africa demonstrated microsatellite alleles and haplotypes
that were generally common across the Atlantic, suggesting little evidence of population structure, even
at the most extreme latitudinal ranges considered. This lack of genetic differences across the Atlantic
waters does not conform to expectations from typical life-history characteristics of small, demersal
elasmobranchs that suggest low dispersal potential [81]. Nevertheless, similar patterns of little genetic
evidence of population structure have also been reported for the starry ray (Amblyraja radiata) in the
north Atlantic over comparable scales [81,82]. Perhaps both of these species correspond to a more typical
pattern of marine species population structure with large effective population sizes and high gene flow
within the Atlantic that minimize the effects of genetic drift and lead to low levels of population structure
that are difficult to detect [83,84].

While nuclear and mtDNA data generally exhibited highly concordant results, differing signals
of population structure were identified around Mallorca, with mtDNA suggesting a close similarity
with the Atlantic group (figure 2b), and microsatellite markers indicating a more intermediate position
between the Atlantic and the Mediterranean groups (figure 2a). This result is consistent with the
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Balearic Islands representing an important region of secondary contact. There is strong evidence that
many marine species have invaded the western Mediterranean through the Strait of Gibraltar since the
last glacial maximum, bringing previously allopatric lineages into contact [47,85-87]. The differences
in the modes of inheritance between the two marker types may also explain the differing patterns
of population structure identified, with the smaller effective population size of mtDNA potentially
leading to more rapid genetic drift and the fixation of Atlantic haplotypes within the populations of
the western Mediterranean.

5.1. Phylogeography

There have been long-standing hypotheses suggesting that the Strait of Gibraltar (the so-called
‘Pillars of Hercules’) or the Almeria—Oran Front represents phylogeographic barriers that shape the
biogeographical patterns of marine Atlantic-Mediterranean organisms (reviewed in [47]). A number
of molecular studies corroborate these scenarios with genetic discontinuity between the Atlantic and
the Mediterranean populations occurring at the Strait of Gibraltar [88-92]. However, since the opening
of the Strait of Gibraltar occurred at the end of the Messinian salinity crisis, its status as a current
barrier to gene flow has been questioned. This study does not support a genetic discontinuity across
the Strait, as an important zone of secondary contact between these populations is actually present in
the Balearic Sea (followed by increasing genetic distinctiveness in the more isolated and semi-enclosed
regions of the eastern Mediterranean, perhaps corresponding to relictual populations). Similar zones
of secondary contact between the Mediterranean and the Northeast Atlantic stocks are also observed
in other fish, such as the Atlantic bonito and the swordfish [93,94], suggesting this may be a common
phylogeographic scenario.

The Mediterranean and the Northeast Atlantic share a history of inter-connectedness and have a
large number of species in common. However, some evidence of contrasting demographic signatures
was detected between the Atlantic and the Mediterranean populations of S. canicula. The Atlantic
populations typically showed patterns of population expansion, while the Mediterranean appeared
much more stable. This could be explained by the long-term stability and the consistent existence of
suitable habitat in the Mediterranean during the Pleistocene glacial and interglacial cycles, as has been
observed for other species [95,96]. Many of the Mediterranean basins are relatively deep, potentially
providing suitable habitat for S. canicula during climatically driven sea-level fluctuations, allowing its
persistence [97]. Recolonization of North Atlantic shelf habitats may have been rapid over the current
interglacial cycle, meaning that it would not have promoted genetic discontinuity among regions.
Interestingly, no evidence of northern refugia was supported by our data, in contrast to other marine
taxa [43-45,98,99]. This lack of spatial association is also shown in the haplotype distribution where
the two main haplotypes are shared by individuals caught along the Atlantic coast (figure 4). Together
these data are suggestive of a relatively sudden population expansion. The apparent absence of a
northward decrease in genetic diversity (table 1) is, however, not generally supportive of the ‘leading
edge hypothesis’ [100], where latitudinal genetic variation is reduced in recently colonized populations
owing to stochastic processes.

5.2. Sex-biased dispersal

Despite obvious congruence in patterns of population structure identified between the mtDNA and
microsatellite data (tables 2 and 5), global testing across all populations demonstrated significant
differences that were consistent with male-biased dispersal and female philopatry in S. canicula. This
supports growing evidence of sex-based differences in dispersal and behaviour in elasmobranchs more
widely [76,77]. However, there are limitations with the tests employed in this study. In the comparison
of mtDNA and nuclear DNA markers, the reduced effective population size of mtDNA leads to
expectations of greater Fsr values, regardless of differences in sex-biased dispersal. Therefore, the recent
approach of Daly-Engel et al. [35] was used; they suggested this comparison is robust with the use
of numerous polymorphic nuclear markers that provide strong statistic power to detect population
structure [101]. If population sizes are stable, it will also decrease the chance that differences in mtDNA
and nuclear DNA are driven purely by variation in marker effective population size [35].

In order to overcome the limitations with comparisons of mtDNA and nuclear DNA, an additional
suite of tests for sex-biased dispersal that focus on the microsatellite markers alone was conducted. These
tests have a number of assumptions, including non-overlapping generations, equal sample size, juvenile
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dispersal and equal sex ratios [75] that are not necessarily satisfied in this case. However, the methods
do provide a valuable way of interrogating the data and have been used in similar studies [102-104].

The apparent male-biased dispersal supports a long history of work demonstrating strong sex-based
differences in the behaviour of the small-spotted catshark. It was the first elasmobranch species for
which systematic analyses of unequal sex ratios in trawl catches provided clear evidence for unisexual
aggregations [105,106], with recent work suggesting that this is the result of sexual harassment by males
[107,108]. Finally, our results also support the commonly made association between the reproductive
strategies of sharks and marine mammals that much greater investment in reproduction by females than
males is at the evolutionary root of these differences in behaviour [27,35].

5.3. Conservation implications

The assessment and management of shark stocks is not well established, in part, because many
characteristics such as dispersal or migratory behaviour are not fully understood [37]. Additional factors
such as female philopatry, sexual segregation and sex-biased dispersal should be better considered
in any management regimes, as spatially focused fisheries could result in the differential exploitation
of sexes. The results of this study clearly show the potential for S. canicula to form multiple stocks
within its distributional range. This has important implications for sustainable management, as effective
conservation measures may need to be implemented at the level of the demographic unit to ensure long-
term stock viability in the face of exploitation [109]. This is especially relevant in the case of the northern
Adriatic Sea stock, which appears to have undergone dramatic declines in abundance [26], but for which
recovery may not be as simple as immigration from proximate regions.
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