
1. Introduction
The marine carbonate system is changing due to the absorption of CO2 into the ocean from the atmosphere; 
approximately 26% of anthropogenic CO2 emissions are absorbed by the oceans annually (Friedlingstein 
et al., 2021). Absorption of atmospheric CO2 is changing the carbonate chemistry of the ocean, by increasing H + 
ions (decrease in pH) and decreasing carbonate ions and calcium carbonate mineral saturation states. This process 
is known as ocean acidification (OA) (Caldeira & Wickett, 2003).

In a recent paper by Qi et al. (2022) OA was observed to be happening at a rate four times faster than in other 
ocean basins in the Western Arctic Ocean. The Arctic Ocean is particularly susceptible to OA due to its low buff-
ering capacity and freshening from river run off, glacial and sea ice melt (Bellerby, 2017; Bellerby et al., 2018; 
Jones et  al.,  2021; Krasting et  al.,  2022; Zhang et  al.,  2020). Corrosive saturation states for aragonite, a key 
calcium carbonate mineral for shell building organisms, are already being observed in the Chukchi and Laptev 
Seas (Cross et al., 2018), the Chukchi Sea and Beaufort Gyre region (Qi et al., 2017, 2022), Canadian Basin 
(Jutterström & Anderson, 2010), the central Arctic (CA) Ocean (Ulfsbo et al., 2018) and the Eastern Siberian sea 
(Anderson et al., 2011; Semiletov et al., 2016).

OA is just one of many climate driven changes impacting the Arctic Ocean, changes which, interact and influence 
the carbonate chemistry in a multitude of ways resulting in regional differences. Increased warming has led to 
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increased snow and glacial melting, resulting in increased river discharge and freshwater inputs into the Arctic 
Ocean (Shiklomanov et al., 2021; Solomon et al., 2021). The increase in freshwater content of the Arctic Ocean 
affects the carbonate chemistry by lowering total alkalinity (TA), and hence reducing the buffering capacity of 
the ocean (Pogojeva et al., 2022). However, if the freshwater input contains dissolved glacial bedrock high in 
carbonate minerals this can have the opposite effect, of increasing TA (Brown et al., 2020; Geilfus et al., 2021). 
Opposite to other Arctic regions, in the Barents Sea a decline in freshwater input has been observed, which has 
been linked to a decline in sea ice import into the region (Lind et al., 2018) and the progression of warmer, more 
saline Atlantic water which flows from the North Atlantic into the Arctic Ocean in a process that has been termed 
“Atlantification” (Polyakov et al., 2017).

Another resultant impact of warming is a reduction in sea ice cover and thickness (Kwok, 2018), which affects 
the complex interactions with surface carbonate chemistry and leads to a greater area for CO2 gas exchange. This 
loss of sea ice cover is also impacting primary production (Wassmann et al., 2006), high primary productivity 
in the late spring and summer removes CO2 from the water, while high respiration in the winter has the opposite 
effect (Semiletov et al., 2007). Collectively, these complex interactions and varying conditions result in changes 
in carbonate chemistry within Arctic waters that are highly regionally and temporally dependent and not well 
characterized, so effective monitoring is critical. Understanding and quantifying how the carbonate chemistry 
is changing in the Arctic Ocean will better inform the scientific community on how ecosystems, habitats, and 
species may be impacted by OA (Green et al., 2021).

Carbonate chemistry measurements traditionally have been collected as discrete samples on ship cruises, and 
more recently using sensors on Bio-Argo floats, moorings and other autonomous platforms that utilize sensors 
(Boutin et  al.,  2021b). Marine carbonate chemistry can be characterized using temperature, salinity, and any 
combination of two of the four variables: TA; dissolved inorganic carbon (DIC); pH; and partial pressure of 
carbon dioxide (pCO2) (Dickson et al., 2007). TA and DIC have historically been measured using bottle sampling 
with laboratory analysis (Dickson et al., 2007). Historically for sea surface salinity (herein referred to as salin-
ity) and sea surface temperature (herein referred to as temperature) have more routinely been measured than 
carbonate system parameters. The possibility of calculating TA and DIC from other oceanographic variables, 
such as salinity, oxygen, silicate, phosphate, and nitrate in the North Atlantic was first demonstrated by Brewer 
et al. (1995). This offered the potential of filling carbonate chemistry data set gaps through using more readily 
available data for example, satellite record and more frequently measured on hydrographic cruises and sensors. 
Following on from Brewer et al. (1995), the next stage was to establish algorithms for different oceans which 
Millero et al. (1998) began to develop. Lee et al. (2000) developed DIC algorithms further by producing algo-
rithms for several ocean basins using temperature and nitrate. And Lee et al.  (2006) developed algorithms to 
calculate the temperature and salinity relationship with TA using an optimal polynomial fit, dividing the global 
oceans up into five regions.

The first regional Arctic Ocean specific algorithm was developed by Tait et al.  (2000) for the Labrador Sea, 
which used a multiple linear regression to calculate TA from salinity and temperature. Other studies derived 
simple linear regression algorithms between salinity and TA for other Arctic Ocean regions, including the Barents 
Sea (Kaltin et al., 2002), CA Ocean and Kara and Laptev Seas (Fransson et al., 2001), the North Pacific (Wong 
et al., 2002), Norwegian Sea (Bellerby et al., 2005) and Chukchi Sea (Kaltin & Anderson, 2005). These advances 
were followed by Arrigo et al. (2010) who developed multiple linear regression for both TA and DIC for Barents 
and Greenland Seas; whilst Takahashi et al. (2014) also used a multiple linear regression to develop TA algo-
rithms for six regions in the Arctic Ocean.

All of these approaches used in situ or modeled data for salinity and temperature inputs. The potential of using 
satellite observations to observe the carbonate system via the same empirical algorithms was identified by Land 
et al. (2015) and Salisbury et al. (2015). Although to date only a few studies have attempted to use satellite data 
as inputs for TA or DIC empirical algorithms (Fine et al., 2017; Gregor & Gruber, 2021; Land et al., 2019; Sims 
et al., 2023). These global and regional approaches show much promise (e.g., root mean square difference of 
17 μmol kg −1; Land et al., 2019). However, none of these studies have addressed polar waters and the full poten-
tial of satellite observations for studying ocean carbon remains largely unexplored (Shutler et al., 2020).

Early work by Swift and McIntosh  (1983) and Yueh et  al.  (2001) identified how salinity can be determined 
from satellite observed emissivity and its relationship with conductivity (e.g., in a similar way to how in situ 
instruments relate conductivity to salinity). These salinity data sets are now routinely provided by the following 
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satellites platforms or sensors: the Soil Moisture and Ocean salinity (SMOS) 
satellite; the Aquarius sensor on board the SAC-D spacecraft; and the Soil 
Moisture Active Passive (SMAP) satellite (Vinogradova et  al., 2019). The 
careful inter- and cross-calibration between these different observations, has 
enabled the generation of a multi-sensor temporally consistent global cover-
age climate data record with well-characterized uncertainties that is moni-
tored and continues to be updated with new data (combined uncertainties of 
0.15 when compared to global Argo data, Boutin et al., 2021a). Equivalent 
inter- and cross-calibrated multi-sensor data product specific to the high lati-
tudes has also been produced (combined uncertainties of 0.24–0.35 when 
compared to Argo; Olmedo et al., 2018) and its development highlighted the 
lack of in situ data available in some polar regions. Satellite observed temper-
ature data can be used to calculate DIC and TA and global satellite-observed 
climate data records with well characterized uncertainties are available 
for these parameters as well (Merchant et  al.,  2019). Satellite observed 
chlorophyll-a (chl a) concentration can also be used in empirical relationships 
to calculate DIC (Sathyendranath et al., 2019). Additionally, the development 
of re-analysis data sets and large community data set collation and quality 
control activities means that other large in situ or observation-based data sets 
are now available (Cabanes et al., 2013; Kolodziejczyk, Hamon, et al., 2021; 
Szekely, Gourrion, Pouliquen, & Reverdin, 2019).

The objective of this work was to evaluate the published empirical algorithms 
with different combinations of input data sources to drive the regional calcu-
lations of alkalinity and DIC. And to then evaluate whether in situ re-analysis 
products and satellite observations can be robustly used in the Arctic Ocean 
as a method for monitoring surface carbonate chemistry and hence evaluating 
OA and its impacts.

2. Materials and Methods
2.1. Data

2.1.1. Study Area

The Arctic Ocean was separated into six biogeochemical regions based on previous work by Carmack and 
Wassmann (2006) and following Findlay et al. (2015) and as guided by Green et al. (2021) giving: the inflow 
shelves of the Atlantic influenced seas (AiS) and Pacific influenced seas (PiS); the river influenced seas (RiS) 
can be separated into two areas: the east Arctic along the Siberian coast (RiS_S) which encompasses: Kara Sea; 
Laptev Sea; East Siberian Sea, and then the Beaufort Sea (RiS_B); the CA; and the outflow shelves (OFS) of the 
Canadian Arctic and East Greenland (Figure 1).

2.2. Analysis of Published Algorithms

A total of 23 TA and 5 DIC studies publishing Arctic specific regional algorithms using a selection of temper-
ature, salinity, chlorophyll-a, and nitrate (𝐴𝐴 NO3

− ) as input data were analyzed (Tables S1 and S2 in Supporting 
Information S1). While these algorithms have been developed and used with in situ data and climatologies to 
calculate DIC and TA, optimal assessment of spatially complete in situ re-analysis data or satellite observations 
(Table 1), to calculate both DIC and TA in the Arctic Ocean have yet to be assessed.

Each algorithm was analyzed using a combination of input data sources (Table 1). Every input combination 
for each algorithm was evaluated. The methodology within Land et  al.  (2019) and an in situ versus satellite 
data matchup database “OceanSODA-MDB” (Land et  al., 2023) was used to evaluate and rank DIC and TA 
algorithm-input combinations in the Arctic Ocean, allowing the algorithm-input combination with the lowest 
uncertainties to be identified for each region. Limiting the minimum number of estimates versus in situ matchups 
to n ≥ 30 was chosen to identify the most robust choices (Sims et al., 2023), but all results irrespective of n were 

Figure 1. The different biogeochemical regions being studied. AiS, Atlantic 
influenced Seas; OFS, Outflow Seas; PiS, Pacific influenced Seas; RiS_B, 
River influenced Seas- Beaufort Sea; RiS_S, River influenced Seas- Siberian 
seas; CA, central Arctic. Highlighted in blue are the inflow shelfs and 
highlight in pink are the outflow shelfs. Blue line on map are rivers. Made 
with Natural Earth (Patterson & Vaughn Kelso, 2023).
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still analyzed. Weighted Root Mean Squared Deviation (RMSD) and weighted bias statistics (e.g., as used by 
Ford et al., 2021) were used to evaluate all uncertainties and these represent a Type A uncertainty analysis follow-
ing the guidelines of the International Bureau of Weights and Measures (BIPM, 2008). The weights ensure that 
the uncertainties from the original algorithm and in situ uncertainties are included within the analysis. Weights 
were derived from the sum of the individual weight of each algorithm (w), where:

𝑤𝑤 =
1

√

(

(literature algorithm uncertainty)2 + (in situ measurement uncertainty)2
) 

Algorithms without a published algorithm uncertainty could not be included in the weighted statistics (as they lack 
the required model uncertainty value) and hence were not included in the final evaluation. Only algorithm-input 
combinations with 30 or more in situ matchups (n ≥ 30) were considered where this was possible, but combina-
tions with n < 30 were included otherwise.

3. Results
Here we present the overall results from the n ≥ 30 evaluation and then the satellite data driven algorithm-input 
combinations where n < 30 are presented.

3.1. Total Alkalinity

3.1.1. Atlantic Influenced Seas

The salinity-TA relationships were most effective in the AiS, having the lowest RMSD of all the regions. The 
algorithm-input combination with the lowest combined uncertainties was Nondal et al. (2009) using the ISAS 
data set (RMSD 20.7 and bias 2.3 µmol kg −1, n = 162, Figures 2 and 3, Table S3 in Supporting Information S1). 
Algorithm-CORA combination also had low combined uncertainties in this region (RMSD 22.5 and bias 
3.4 µmol kg −1, n = 191, Figure 2, Table S3 in Supporting Information S1).

None of the satellite data set matchups had n ≥ 30; both algorithm-ESACCI combinations (RMSD 20.7 and 
bias 9.1 µmol kg −1, n = 16, Table S3 in Supporting Information S1) and algorithm-BEC Arctic combinations 

Name Parameters Information Reference

European Space Agency Climate Change Initiative 
the Operational Sea Surface Temperature and Sea 
Ice Analysis v2. (ESACCI temperature)

Temperature Satellite observations Good et al. (2019, 2020) and 
Merchant et al. (2019)

Optimum Interpolation Sea Surface Temperature 
v2.1 (OItemperature)

Temperature Gridded data from satellites, ships, buoys, 
and Argo floats

Banzon et al. (2016) and Huang 
et al. (2021)

Coriolis Ocean database for Reanalysis v5.2 (CORA) Temperature Salinity Global ocean- gridded in-situ observations Szekely, Gourrion, Pouliquen, 
Reverdin, and Merceur (2019)

Remote Sensing Systems National Aeronautics 
and Space Administration Soil Moisture Active 
Passive v4.0 (SMAP)

Salinity Satellite observations Meissner and Wentz (2019)

European Space Agency Climate Change Initiative 
Sea Surface Salinity v2.31 (ESACCI salinity)

Salinity Satellite observations Boutin et al. (2021a)

In Situ Analysis System 15 (ISAS) Salinity Gridded data from Argo, Moorings, 
Marine Mammals, merchant ships

Kolodziejczyk, Prigent-Mazella, 
and Gaillard (2021)

World Ocean Atlas (WOA) 𝐴𝐴 NO3
− , 𝐴𝐴 PO4

3− , 𝐴𝐴 SiO4
4− , O2 In situ profile data Boyer et al. (2018)

European Space Agency Climate Change Initiative 
Ocean color

Chl a Satellite observations Sathyendranath et al. (2019)

Barcelona Expert Center Soil Moisture and Ocean 
Salinity high latitude (BEC Arctic salinity)

Salinity Satellite observations Olmedo et al. (2018)

Note. Temperature, sea surface temperature; Salinity, sea surface salinity; Chl a, chlorophyll a; DO, dissolved oxygen; 𝐴𝐴 NO3
− , nitrate; 𝐴𝐴 PO4

3− , phosphate; 𝐴𝐴 SiO4
4− , silicate; 

DIC, dissolved inorganic carbon; TA, total alkalinity.

Table 1 
The Different Input Data Sets Used in the Algorithm Comparison From Land et al. (2023) OceanSODA-MDB (Satellite Oceanographic Data Sets for Acidification)
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(RMSD 23.4 and bias −4.0 µmol kg −1, n = 19, Table S3 in Supporting Information S1) uncertainties were 
comparable to the reanalysis products. However, algorithm-SMAP combination had high combined uncertain-
ties in comparison (RMSD 41.1 and bias 28.1 µmol kg −1, n = 8, Table S3 in Supporting Information S1). The 
standard deviation (SD) of the in situ data for this region was 38 µmol kg −1 (Table S4 in Supporting Informa-
tion S1; calculated from the regional in situ data of Land et al., 2023) and hence the algorithm-ESACCI and 
BEC Arctic combinations are both accurate enough to distinguish natural variations in TA when applied to the 
AiS region.

Figure 2. The mean weighted RMSD output for each salinity source, data grouped by region and salinity source. (a) Total 
alkalinity, (b) dissolved inorganic carbon. Error bars represent the standard deviations for the mean RMSD for that salinity 
input combinations.
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3.1.2. Pacific Influenced Seas

The Kaltin and Anderson (2005) algorithm-BEC Arctic combination had the lowest uncertainties in the PiS 
(RMSD 80.6 and bias 28.9 µmol kg −1, n = 39; Figure 2 and Figure S3 in Supporting Information S1, Table S5 
in Supporting Information S1). The algorithm-ISAS and CORA combinations had higher combined uncertain-
ties (RMSD 89.5 and 81.2 µmol kg −1; bias −5.6 and 4.9 µmol kg −1; n = 196 and 223, respectively; Figure 2, 
Table S5 in Supporting Information S1), although RMSDs are less than the SD of the region (108 µmol kg −1; 
Table S4 in Supporting Information S1). Neither the algorithm-SMAP nor ESACCI combinations had match-
ups with n ≥ 30, however, algorithm-SMAP combination came close and had lowest combined uncertainties 

Figure 3. The lowest uncertainty algorithm-input combination outputs compared against in situ for Atlantic influenced 
Seas for re-analysis products and satellite. (a) Predicted total alkalinity (TA) using ISAS salinity input data set with Nondal 
et al. (2009) algorithm against in situ TA. (b) Predicted TA using the lowest uncertainty satellite salinity algorithm-input 
combination, ESACCI Soil Moisture and Ocean salinity with Nondal et al. (2009) algorithm against in situ TA. (c) Predicted 
dissolved inorganic carbon (DIC) using the lowest uncertainty algorithm-input reanalysis combination with ISAS salinity and 
ESACCI temperature with Nondal et al. (2009) algorithm against in situ DIC. (d) Predicted DIC using Soil Moisture Active 
Passive salinity and CORA temperature with Nondal et al. (2009) algorithm against in situ DIC. The X error bars are the 
TA reference output uncertainty, and the y error bars are the predicted combined output uncertainty. Solid black line is the 
regression line of in situ TA against calculated TA and the dashed line is y = x. Note the axis are on difference scales.
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of all data sets (RMSD 48.5 and bias 21.10  µmol  kg −1, n  =  26, Table S3 in Supporting Information  S1). 
ESACCI had high combined uncertainties (RMSD 98.3 and bias 58.4 µmol kg −1, n = 8, Table S3 in Supporting 
Information S1).

3.1.3. Outflow Shelf

The Tynan et al.  (2016) algorithm-ISAS salinity and CORA temperature input data set combinations in OFS 
had the lowest combined uncertainties (RMSD 43.0 and bias 1.7 µmol kg −1, n = 223, Figure 2 and Figure S3 
in Supporting Information S1). The algorithm-CORA salinity combinations had higher uncertainties, with the 
lowest combined uncertainties with CORA temperature (RMSD 51.8 and bias = 2.5 µmol kg −1, n = 357, Table 
S5 in Supporting Information S1). The algorithm-SMAP combinations had the lowest combined uncertainties 
(RMSD 54.6 and bias 35.5 µmol kg −1, n = 24, Table S3 in Supporting Information S1). For all algorithm-ESACCI 
and BEC Arctic salinity inputs combinations produced higher RMSDs (RMSD 83.3 and 67.0 µmol kg −1; bias 
39.8 and 20.6 µmol kg −1; n = 50 and 71, respectively, Figure 3, Table S5 in Supporting Information S1) than the 
SD of TA in the region (68 µmol kg −1; Table S4 in Supporting Information S1).

Figure 3. (Continued)
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3.1.4. River Influenced Seas

RiS_B had a greater number of data points in the OceanSODA-MDB than RiS_S, with a total of 372 matchups for 
TA. The DeGrandpre et al. (2019) algorithm-BEC Arctic salinity combination produced the lowest uncertainties 
with n > 30 (RMSD 73.8 and bias 24.0 µmol kg −1, n = 50, Figure 2 and Figure S3 in Supporting Information S1 
& Table S5 in Supporting Information S1). The algorithm-CORA and ISAS combinations RMSDs (RMSD 136.5 
and 119.4 µmol kg −1, bias 52.3 and 8.3 µmol kg −1, n = 161 and 98, respectively; Table S5 in Supporting Infor-
mation S1) were also above the SD for the region (SD = 131 µmol kg −1, Table S4 in Supporting Information S1). 
The algorithm-SMAP combination has the lowest uncertainties out of all data sets but with low n number (RMSD 
43.1 µmol kg −1, bias = −9.9 µmol kg −1, n = 17, Table S3 in Supporting Information S1). The algorithm-ESACCI 
combinations had higher uncertainties in comparison (RMSD 199.7 µmol kg −1, bias 179.6 µmol kg −1, n = 25, 
Table S3 in Supporting Information S1).

3.1.5. Central Arctic

The Arrigo et  al.  (2010) algorithm-ISAS salinity combination had lowest uncertainties in the CA (RMSD 
79.6 µmol kg −1, bias −6.7 µmol kg −1, n = 256, Figure S3 in Supporting Information S1), and had lower SD of the 
in situ data for this region (SD 131 µmol kg −1, Table S4 in Supporting Information S1). The algorithm-CORA 
combinations had higher combined uncertainties in comparison (RMSD 91.9 µmol kg −1, bias 29.5 µmol kg −1, 
n = 175, Figure S3 in Supporting Information S1). No SMAP matchups were identified. Both algorithm-ESACCI 
and BEC Arctic combinations had low n (RMSD 132.1 and 56.9 µmol kg −1; bias −3.4 and 8.3 µmol kg −1; n = 8 
and 18, respectively, Table S3 in Supporting Information S1) but Arrigo et  al.  (2010) algorithm-BEC Arctic 
combination had lowest uncertainties out of all input combinations.

3.2. Dissolved Inorganic Carbon

The section below presents and discusses the DIC algorithm-input combinations, as with the section above, we 
first report the results of the n ≥ 30 results and then results from the n < 30. There were no matchups for the CA 
region.

3.2.1. Atlantic Influenced Seas

As with TA, the AiS region was found to have the lowest combined uncertainties. The algorithm Nondal 
et  al.  (2009) with ISAS salinity and ESACCI temperature data sets had the lowest combined uncertainties 
(RMSD 24.4 and bias −13.9  µmol  kg −1, n  =  262, Figures  2 and  3). The algorithm-CORA combinations 
had higher uncertainties (RMSD 27.2 and bias −14.7 µmol kg −1, n = 360, Table S6 in Supporting Informa-
tion S1). Similar to TA, no satellite salinity data sets had n ≥ 30, this due to only a few in situ data points in 
OceanSODA-MDB in AiS in the time frame of satellite salinity. Satellites salinity algorithm-input combina-
tion RMSDs were much higher, with SMAP algorithm-input combination with the lowest combined uncer-
tainty out of all satellite data sets (RMSD 33.8 and bias −17.8  µmol  kg −1, n  =  8, Table S7 in Supporting 
Information S1). The algorithm-BEC Arctic and ESACCI combinations had higher uncertainties (RMSD 45.1 
and 64.8 µmol kg −1; bias −31.8 and −46.3 µmol kg −1; n = 43 and 44, respectively, Table S6 in Supporting 
Information S1).

3.2.2. Pacific Influenced Seas

The Lee et al. (2000) algorithm with the OI (Optimum Interpolation) Temperature and CORA salinity combina-
tions had the lowest uncertainty for the PiS (RMSD = 74.3 µmol kg −1, bias −34.9 µmol kg −1, n = 137; Figure 2 
and Figure S3 in Supporting Information S1, Table S6 in Supporting Information S1). The algorithm-ISAS salin-
ity combinations had higher RMSD and bias (RMSD 88.9 µmol kg −1, bias 62.9 µmol kg −1, n = 142; Figure 2, 
Table S6 in Supporting Information S1). The SD for DIC in this region was 98 µmol kg −1 (Table S4 in Supporting 
Information S1), all CORA salinity combinations were below this. In this region satellite salinity data sets n < 30, 
though all algorithm-satellite salinity combinations uncertainties were below the SD for the region. ESACCI 
salinity combinations had the lowest combined uncertainties out of the salinity data sets but had a very low n 
value (RMSD 52.0 µmol kg −1, bias −41.5 µmol kg −1, n = 5; Figure 2, Table S7 in Supporting Information S1). 
The algorithm-SMAP and BEC Arctic combinations had a lower bias than the re-analyzed products (RMSD 
68.9 µmol kg −1, RMSD 77.8 µmol kg −1, bias −32.7, −25.1 µmol kg −1; n = 12, 11, respectively; Table S7 in 
Supporting Information S1).
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3.2.3. Outflow Shelf

The Nondal et  al.  (2009) algorithm-CORA salinity combination had the lowest combined uncertainties with 
n > 30 (RMSD 48.6 µmol kg −1, bias −4.3 µmol kg −1, n = 309; Figure 2 and Figure S3 in Supporting Informa-
tion S1, Table S6 in Supporting Information S1). The algorithm-ISAS combinations had a much higher bias 
and RMSD (RMSD 52.6 µmol kg −1, bias −28.1 µmol kg −1, n = 204, Table S6 in Supporting Information S1). 
Satellites algorithm-input combinations had the highest match ups in this region with in situ DIC. Both BEC 
Arctic and ESACCI salinity data sets with Lee et al. (2000) algorithm-input combination reaching over our n 
threshold had higher combined uncertainty than re-analysis products (RMSD 60.8, 67.7 µmol kg −1; bias −5.2, 
1.6 µmol kg −1; n = 70, 66, respectively, Table S6 in Supporting Information S1). The algorithm-SMAP salinity 
combination had lowest RMSD, though n was less than 30 (RMSD 41.1 µmol kg −1, bias 19.3 µmol kg −1, n = 23, 
Table S7 in Supporting Information S1).

3.2.4. River Influenced Seas

There were no match ups with n ≥ 30 for analysis in the RiS_S region, and no satellite match ups. Lee et al. (2000) 
algorithm-CORA and ISAS combination had lowest combined uncertainty (RMSD 236.8, 377.9 µmol kg −1; bias 
100.7, −242.1 µmol kg −1, n = 27, 28; respectively; SD 271 µmol kg −1; Table S4 in Supporting Information S1). 
This region needs more data and regionally tuned algorithm development.

The RiS_B had sufficient data, but algorithm-input combination had high uncertainties. The Arrigo et al. (2010) 
algorithm with CORA salinity and OI temperature combination with n > 30 had the lowest combined uncertain-
ties (RMSD 335.9 µmol kg −1, bias −26, 5 µmol kg −1, n = 64; Figure 2 and Figure S3 in Supporting Informa-
tion S1, Table S6 in Supporting Information S1). The algorithm-ISAS combination produced very large bias and 
RMSD, with the lowest RMSD and bias much higher (RMSD 623.7 µmol kg −1, bias −668.5 µmol kg −1, n = 89, 
Table S6 in Supporting Information S1). The algorithm-ESACCI combinations had lowest uncertainties out of 
all salinity combinations but very low n value (RMSD 81.4 µmol kg −1, bias 26.8 µmol kg −1, n = 6, Table S7 in 
Supporting Information S1). There were no SMAP matchups. The algorithm-BEC Arctic combinations had lower 
uncertainties than algorithm-ISAS combination (RMSD 269.5 µmol kg −1, bias −181.0 µmol kg −1, n = 24, Table 
S7 in Supporting Information S1).

4. Discussion
This work has demonstrated that for some regions of the Arctic Ocean, satellite or reanalysis data can be used as 
input data sets to algorithms in order to calculate DIC and TA with uncertainty that matches the variability seen 
in situ data. In other regions some algorithms and input combinations had higher uncertainties. Here we discuss 
possible reasons for these differences and make recommendations for future development.

4.1. Atlantic Influenced Seas

The TA algorithm-input combinations had lower uncertainties in the AiS than all other regions. Furthermore, the 
RMSDs found here using the Nondal et al. (2009) algorithm were much higher than those reported by Nondal 
et al.  (2009) (RMSD 6.2 µmol kg −1 and bias −1.8 µmol kg −1). There could be several explanations for these 
results; there are fewer TA in situ data for the most recent decade, and within the OceanSODA-MDB (Figure 
S1 in Supporting Information S1), to analyze uncertainties in this region. For example, PiS has a lot more TA 
matchups in the satellite time period year 2010–2020 than AiS. The region is also undergoing rapid change; for 
example, rapid warming is occurring in the Barents Sea, with winter warming rates more than twice the rate 
of warming in other Arctic areas, and with a decadal trend of 1.74°C of warming (Cai et al., 2022). Warming 
has led to sea ice loss in the Barents Sea with a reduction in ice extent by two thirds since 1979 (Onarheim & 
Årthun, 2017).

The region is also subject to measurable acidification, the Ocean Weather Station M based in the AiS has 
recorded a decrease in surface pH of −0.092 and an increase in the surface by 2.92 ± 0.37 μatm year −1, over the 
last 28 years (Skjelvan et al., 2022). The freshwater and salinity budget are also changing. In the Nordic Seas 
there has been considerable decrease in freshwater content of the area and TA has been observed to be increas-
ing from 1981 to 2019 (Fransner et al., 2022). There is also evidence of “Atlantification” a process whereby 
warmer, saltier Atlantic water is moving further north into the AiS region of the Arctic than was previously 
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occurring. Atlantification has led to changes in species distribution, this can have an impact on carbonate chem-
istry, for example, the northward expansion of calcifying Emiliania Huxleyi impacts the carbonate chemistry of 
the surrounding water column by decreasing TA in the growth season and increasing TA when E. Huxleyi decay 
(Oziel et al., 2020; Robertson et al., 1994). Hence, Atlantification can impact carbonate chemistry algorithms in 
two main ways: the first being that Atlantic water has higher salinity and warmer temperature (Arrigo et al., 2010) 
so the algorithms are different for TA and DIC. The second being influx of calcifying E. Huxleyi that decrease TA 
and therefore also changes the relationship between salinity and TA. The Nondal et al. (2009) algorithm, although 
has low combined uncertainties, was trained on data well over a decade old and therefore may be less likely to 
predict more recent changes in the salinity-TA relationship in this region. More recent in situ TA data is needed 
to test this. Thus, climate change consequences seen in recent years since these older algorithms were developed 
highlights the potential need for algorithm retraining and addition of modern in situ TA data.

For the DIC analysis, the Nondal et al. (2009) algorithm-input combinations had lower uncertainty in this region 
compared to the Arrigo et al. (2010) or Brewer et al. (1995) algorithm-input combinations. This reduced uncer-
tainty is most likely due to Nondal et al. (2009) using two different algorithms to capture the seasonal effect on 
DIC. The CORA and ISAS input data sets with the Nondal et al. (2009) algorithm have RMSD well below the 
SD of DIC in this region (SD 43 µmol kg −1, Table S4 in Supporting Information S1). The recent changes in the 
region mentioned above could also be impacting the DIC algorithms, especially given, as with TA, there are fewer 
DIC data for recent years and within the OceanSODA-MDB (Figure S2 in Supporting Information S1). These 
results suggest algorithms need retuning to improve the uncertainties when using satellite inputs ESACCI salinity 
and BEC Arctic. At present, ESACCI salinity and BEC Arctic are not suitable to be used as input sources for 
published DIC algorithms. To support this, further efforts of DIC in situ data collection are needed.

4.2. Pacific Influenced Seas

The largest difference between the calculated TA and the in situ TA was close to the shelf break. The shelf break 
in this region is a known area of upwelling of deep Atlantic Water, which circulates across the Arctic Ocean from 
the AiS (Li et al., 2022). The deep Atlantic Water has a different salinity-TA relationship to Pacific Water (Arrigo 
et al., 2010), and may explain why the PiS-specific algorithms do not reproduce the TA values seen in situ. Sea ice 
formation and melt also affects the salinity-TA relationship by changing the y-intercept of the equation (MacGilchrist 
et al., 2014), and hence there is likely to be a seasonal salinity-TA signal, which is not explored in these published 
algorithms. Despite some algorithm-input data set combinations having high RMSD, the overall high variability in 
this region (SD 108 µmol kg −1) suggests it is still possible to use algorithms with satellite inputs to calculate TA.

Arrigo et al. (2010) developed two seasonal DIC relationships for the PiS region, with an RMSD of 17.3 µmol kg −1 
in spring and 61.6 µmol kg −1 in summer, resulting in reduced uncertainties compared to other algorithm-input 
combinations. Kim et al. (2021) identified a strong relationship between DIC and salinity in two out of the three 
summers in their study period between the years 2016–2018. The results from Kim et al. (2021) suggested that 
biological activity on annual process impacted the DIC- salinity relationship. The Arrigo et al. (2010) algorithm 
used Chl a in the algorithm to calculate DIC which is a good proxy for biological activity and maybe why this 
algorithm derived DIC with the lowest uncertainty.

Overall algorithm–satellites salinity combinations had lower uncertainties than the algorithm-re-analysis salinity 
combinations. However, for all salinity algorithm-input combinations the RMSD and bias are large; to reduce 
these uncertainties other variables might need to be incorporated in to DIC algorithm that capture other processes 
affecting DIC such as vertical/lateral mixing. Future work in this region would benefit from integrating the use 
of satellites to detect upwelling events. Quilfen et al. (2021) demonstrated the use of satellites to detect upwelling 
along the coast of California. Combining satellite surface wind and upwelling analyses with satellite derived 
carbonate chemistry estimates could provide better synoptic monitoring for the carbonate system in these Arctic 
waters. Hence, while overall algorithm-satellites salinity combinations had lower uncertainties in comparison to 
the algorithm-re-analysis salinity combinations, further development of algorithms in this region is needed. As 
well as continued effort for DIC in situ sampling to increase the number of satellite matchups.

4.3. Outflow Shelf

The Tynan et al. (2016) algorithm-input combinations had the lowest uncertainties for this region, most likely due 
to the optimal polynomial fit of this relationship, which can capture the nuances of the complex regional dynamics. 
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Our results suggest that it is not yet possible to use algorithm-satellite salinity combinations in this region as the 
combinations had the highest uncertainties, however, TA can be estimated from algorithm-salinity re-analysis 
combinations. When the salinity in situ data were plotted against the three satellite inputs (Figure S4 in Supporting 
Information S1) there was a low matchup with the algorithm-BEC Arctic combination (slope = 0.54, R 2 = 0.72, 
Figure S4 in Supporting Information S1) and algorithm-ESACCI combination (slope = 0.72, R 2 = 0.44, Figure 
S4 in Supporting Information S1). This could suggest that the higher uncertainty of the satellite driven methods 
in this region are due to either a depth mismatch with respect to the in situ data, or sea ice contamination leading 
to greater uncertainties within these satellite data. Sea ice contamination can occur due to the signal from the ice 
influencing the signal that the satellite views, or considers, the ocean. The study of this complexity is an ongoing 
focus of research, and the satellite salinity community are continuing to work to improve the sea ice corrections 
in level 3 data sets (Kolodziejczyk, Hamon, et al., 2021).

All algorithm-salinity combinations had lower uncertainties than the SD for DIC in this region (67 µmol kg −1; 
Table S4 in Supporting Information S1), except for ESACCI salinity with the ESACCI and OI temperature data 
sets (Table S7 in Supporting Information S1). The variability in DIC in the OFS caused by ice and glacial melt 
maybe one reason for higher uncertainties. A reduction in ice cover can lead to an increase in light availability, 
which in turn can increase primary production (Lewis et  al.,  2016) and ultimately impact DIC relationships 
(Arrigo et al., 2010). Beaupré-Laperrière et al. (2020) observed that a third of all changes in DIC throughout the 
season are as result of biological activity, whereby primary producers consume DIC in surface waters during the 
summer months and mixing of remineralized organic matter contributes to increasing DIC in the winter (Mathis 
& Questel, 2013).

To further reduce the high bias it is likely that further algorithm development work is required with a larger in situ 
training data set for this very geographically-complex region. The OFS is a large region with high spatial varia-
bility both in geographic features, such as inlets between islands, circular bays, and rivers, but also processes that 
influence the salinity and carbonate system. Climate change is changing the processes and timings that control 
TA, for example, river input can decrease or increase TA depending on the composition of river water, while ice 
melting and formation also influence TA via changes in salinity but also from ikaite formation and dissolution 
(Nondal et al., 2009). Changes in these processes will affect the salinity-TA relationship, for example, water flow-
ing through the OFS that has been diluted by ice melt will have a lower y-intercept value than polar water (Nondal 
et al., 2009). This makes the region very nuanced and with more availability of in situ data future work should 
investigate dividing OFS into smaller sub-regions for algorithm development, as large bays like Baffin Bay are 
likely to have different TA and DIC relationships to the smaller straits like Franklin Strait for example. However, 
currently there are not enough in situ data to investigate these complexities.

4.4. River Influenced Seas

RiS_S has historically been understudied; the matchup database only had 69 matches for TA in the region (Land 
et al., 2023; Table S4 in Supporting Information S1), and in weighted analysis there were no data points in the 
matchup database within the algorithm boundary parameters tested. Hence, we were not able to assess this region. 
The rivers that flow into the RiS_S have often a lower TA value than the ocean for example, Cooper et al. (2008) 
found the Ob' and Yenisey rivers had an average alkalinity of 1,518 and 1,047 µmol kg −1. Considering the large 
change in input source composition over recent decades it is vital that we understand how this input from rivers 
is affecting the carbonate chemistry of this region. For instance, Drake et al. (2018) found that in the Yenisey 
and Ob' rivers TA export increased by 185% and 134% over a 41-year period, respectively. The Eastern Laptev 
Sea is already supersaturated with respect to pCO2 and has been found to release CO2 back into the atmosphere 
during the ice-free season instead of absorbing the CO2 (Pipko et al., 2016). In 2012 a 30% increase in primary 
production compared to 1993 was observed in the Laptev Sea continental slope part of the RiS_S, this increase in 
primary production is thought to be related to ice formation happening later and ice melting happening earlier in 
the year leading to a shorter ice cover period (Bienhold et al., 2022). The increase in primary production is also 
likely to impact the carbonate chemistry of the surface waters. Further work is therefore urgently required for both 
collecting more in situ data and developing regional algorithms for the RiS_S.

The dynamics of the RiS linked to high TA variability (Cooper et al., 2008; Findlay et al., 2015), large river 
outflows modified by permafrost, precipitation and primary production (Drake et  al.,  2018), sea ice loss 
(Yamamoto-Kawai et al., 2009) and variations in ground water inputs (Findlay et al., 2015), are potential reasons 
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for high uncertainty in RiS_B. The complex processes influence TA mean that a simple salinity-TA relationship 
will probably not characterize either RiS region with low uncertainty. As seen in the results for RiS_B TA algo-
rithms have high uncertainty, however, to test this theory out in RiS_S more in situ data is needed. For algorithms 
to capture the nuances of RiS_B, they will have to be regionally tuned to capture the processes influencing TA 
in the region.

The SD for DIC in RiS_B was very large 105 µmol kg −1 (Table S4 in Supporting Information S1) however, the 
RMSDs for this region are much higher than SD, with the exception of algorithm-ESACCI salinity combina-
tion. Bates et al. (2005) found the Beaufort Sea to have highly variable DIC <600–2,150 µmol kg −1 and results 
showed high seasonality. Tank et al. (2012) found a seasonally variable DIC flux from the Mackenzie River, the 
RiS_B region's largest river. Therefore, it is not surprising Arrigo et al. (2010) had the lowest uncertainties as 
this relationship takes into consideration the seasonal variability in primary productivity by incorporating Chl a 
into the algorithm, and by having two seasonal relationships it also captures the seasonal impact of fresh, river-
ine input. These results suggest that the algorithms are not robust enough to capture the nuances of the region 
(DeGrandpre et al., 2020) and need further development. There were too few matchups with the ESACCI data 
set in this region and we suggest continued effort to increase the number of in situ and satellite matchups. There 
are a larger number of data points in this region, which hopefully will allow algorithms to be developed further 
to improve the RMSD and bias.

4.5. Central Arctic

The TA algorithm-input combinations had the second highest uncertainties compared to other regions. It can 
therefore be deduced that TA algorithms-input combinations are not capturing the processes impacting TA in this 
region. Conditions are changing throughout the water column because of altered currents flowing into the CA, 
for example, saline Atlantic water is coming up from the deep ocean and is now found at shallower depths in the 
Eurasian Basin (Polyakov et al., 2017). Previous studies have found low TA values in the Makarov basin and the 
mean TA value from the OceanSODA-MDB was 2,041 ± 131 µmol kg −1 year −1, suggesting that this area may 
have low buffering capacity to additional CO2 (Woosley & Millero, 2020). These changing conditions mean that 
algorithms will need regular updates. The changing water bodies will impact the TA algorithm uncertainties and 
could be one reason for the high uncertainties observed here. Further development is therefore important to use 
algorithms for monitoring TA here, as well as targeted DIC data collection to analyze and train algorithms as it is 
currently not possible for DIC in the CA.

5. Conclusions
Here we have demonstrated that the uncertainties of the algorithms and input combinations were observed to vary 
regionally across the Arctic Ocean, with all algorithm-input combinations having the lowest uncertainties in the 
AiS region and highest in the RiS regions. The results showed that TA algorithms-input combinations tended to 
have lower RMSD, and bias compared to DIC algorithms-input combinations. The algorithm-input combinations 
had low enough uncertainties in all regions with available data to distinguish natural variation for TA, but only 
in AiS, PiS and OFS is it possible to use these approaches to distinguish natural variation in DIC. The results 
showed that no algorithm-input combination consistently had the lowest uncertainties in all regions for both TA 
and DIC algorithms, highlighting the regionality of the Arctic Ocean. Though in situ re-analysis products had the 
lowest uncertainty with TA accuracy of 20.7 μmol kg −1 and bias of 2.3 μmol kg −1 in the AiS, satellite data also 
showed significant promise.

We consistently found the algorithm-satellite salinity combinations had much lower numbers of data points (n 
values), which is currently the main limitation to the use of satellite data. The low n values of satellite salinity data 
set matchups are in part due to the time span of the available satellite data, for instance SMOS satellite was only 
launched in 2010 and SMAP in 2015. Maintaining these and future satellite missions is therefore fundamental 
to increase the matchups and time-series. The other reason for low n values will be due to the small number of 
in situ data collected during periods of when satellites are overhead in their orbit. We therefore also recommend 
there is continued and enhanced effort for targeted in situ collection of TA and DIC data designed to support the 
use of satellite Arctic Ocean observations.

Future work should focus on developing these algorithms further to reduce bias and RMSD enabling the accurate 
identification of finer spatial scale changes. One improvement to the DIC algorithms could be made by updating 

 23335084, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

A
002901 by N

ational M
arine B

iological, W
iley O

nline L
ibrary on [12/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth and Space Science

GREEN ET AL.

10.1029/2023EA002901

13 of 16

the algorithms to accommodate the DIC increase that has occurred since their development and then using this 
information within the algorithm training process or by including time in some other way. Further improvements 
could be made by estimating the surface residence time of ice-free waters. Future work should focus on develop-
ing these algorithms further to reduce bias and RMSD enabling the accurate identification of finer spatial scale 
changes of carbonate chemistry for the OA community. Notwithstanding these issues, the approaches used in this 
study could be used to evaluate the carbonate chemistry and OA conditions and history for Arctic Ocean organ-
isms while informing experimental treatment levels within laboratory studies. Similarly, these data could be used 
to identify geographical refugia for some Arctic Ocean species.

Data Availability Statement
The matchup database “OceanSODA-MDB” which was used in the algorithm evaluation is available at https://
data-cersat.ifremer.fr/data/ocean-carbonate/oceansoda-mmdb/ (Land et  al.,  2023; Land & Piollé,  2022). The 
python code used to run the analysis can be found at https://doi.org/10.5281/zenodo.10067204 (Green et al., 2023) 
and was adapted from DOI: https://doi.org/10.5281/zenodo.10069611 (Sims et al., 2022).
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