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Abstract

Coccolithophores are the most abundant calcifying organisms in modern
oceans and are important primary producers in many marine ecosystems.
Their ability to generate a cellular covering of calcium carbonate plates (coc-
coliths) plays a major role in marine biogeochemistry and the global carbon
cycle. Coccolithophores also play an important role in sulfur cycling through
the production of the climate-active gas dimethyl sulfide. The primary model
organism for coccolithophore research is Emiliania huxleyi, now named
Gephyrocapsa huxleyi. G. huxleyi has a cosmopolitan distribution, occupying
coastal and oceanic environments across the globe, and is the most abun-
dant coccolithophore in modern oceans. Research in G. huxleyi has identified
many aspects of coccolithophore biology, from cell biology to ecological inter-
actions. In this perspective, we summarize the key advances made using G.
huxleyiand examine the emerging tools for research in this model organism.
We discuss the key steps that need to be taken by the research community to
advance G. huxleyias a model organism and the suitability of other species
as models for specific aspects of coccolithophore biology.
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INTRODUCTION

The striking biomineralized structures of coccolitho-
phores have held fascination for biologists ever since
the first indications that they were derived from living
cells (Sorby, 1861; Wallich, 1861). Coccolithophores
are one of the most important groups of marine phy-
toplankton, contributing to the global carbon cycle as
major primary producers but also through their ability
to precipitate large quantities of calcium carbonate
(Ziveri et al., 2023). It is estimated that there are around
300 species of coccolithophores in modern oceans, al-
though only a handful are able to grow in laboratory
culture (Probert & Houdan, 2004). This limitation has
strongly shaped the development of model species.

algae, model, ocean acidification, phytoplankton

The vast majority of laboratory research into cocco-
lithophore biology has involved two species, Emiliania
huxleyi and Chrysotila (formerly Pleurochrysis) car-
terae. Recent phylogenetic studies have placed
Emiliania within Gephyrocapsa (Bendif et al., 2023;
Filatov et al., 2021), and so we will refer to this species
as Gephyrocapsa huxleyi in the text below.

Both G.huxleyi and Chrysotila carterae exhibit ro-
bust growth in laboratory culture, in contrast to many
other coccolithophore lineages. Gephyrocapsa huxleyi
has emerged as the dominant coccolithophore model
species primarily because of its ecological relevance
(Westbroek et al., 1993; Figure 1). It is the most abun-
dant coccolithophore species in modern oceans and
displays a cosmopolitan distribution, forming large

Abbreviations: RNA-seq, RNA sequencing.
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1900 ) . .
First observations of G. huxleyi

Laboratory cultures of G. huxleyi are isolated 2
Transmission electron microscopy of coccolith formation 2
Studies of crystal nucleation during coccolith formation

Proposal to develop G. huxleyi as a model for

coccolithophore biology °
1995

First isolation of EhV coccolithoviruses ©

Demonstration of sensitivity to ocean acidification ”
Sequencing of mitochondrial and chloroplast genomes &°
EhV86 viral genome sequenced ©

Strain-specific variability in response to ocean
acidification "

Comparative transcriptomics of life cycle phases '?

2010

Identification of voltage-gated H" channels in G. huxleyi "

Nuclear genome sequenced and annotated '

Metabolite profiling reveals importance of mannitol
as a carbon storage compound '°

Identification of the Alma1 DMSP lyase '°
2020 Single cell transcriptomes from viral infected cells "7

First reports of successful genetic manipulation '@

FIGURE 1

A timeline of Gephyrocapsa huxleyi research. A list of 18 key publications in G. huxleyi research. 1: Lohmann (1902),

2: Paasche (1962), 3: Wilbur and Watabe (1963), 4: Young et al. (1992), 5: Westbroek et al. (1993), 6: Bratbak et al. (1996), 7: Riebesell

et al. (2000), 8: Sanchez Puerta et al. (2004), 9: Sanchez Puerta et al. (2005), 10: Wilson et al. (2005), 11: Langer et al. (2009), 12: von
Dassow et al. (2009), 13: Taylor et al. (2011), 14: Read (2013), 15: Obata et al. (2013), 16: Alcolombri et al. (2015), 17: Ku et al. (2020), 18: Cai
et al. (2021). Scanning electron microscopy images of G. huxleyi are shown.

blooms in both coastal and oceanic environments.
In contrast, C.carterae is restricted to coastal envi-
ronments and forms a much less prominent role in
phytoplankton assemblages, although it remains an
important model for specific aspects of coccolithophore
biology (Kadan et al., 2021; Marsh, 1999).

GEPHYROCAPSA HUXLEYI AS A
MODEL ORGANISM

Much research involving G. huxleyi has understandably
focused on biological processes relating to calcification.
Early studies using electron microscopy demonstrated
cell ultrastructure associated with the developing coc-
coliths, such as the nature of the coccolith vesicle
(Klaveness, 1972), and revealed the conserved nature
of crystal nucleation during coccolith formation (Young
et al., 1992). More recent studies have demonstrated
the presence of calcium-rich organelles associated
with the coccolith vesicle, although their role in the cal-
cification process remains unclear (Sviben et al., 2016).
Many isolates of G. huxleyi exhibit reduced calcification
after prolonged growth in laboratory culture or have
the lost the ability to calcify altogether. The ability to

directly compare calcified and non-calcified G. huxleyi
strains has been extensively exploited by researchers
to examine how calcification influences cell physiology
(Mackinder et al., 2011; Paasche, 1998).
Gephyrocapsa huxleyi represents an important focal
point for research into the impacts of ocean acidifica-
tion on calcifying organisms. Riebesell et al. (2000)
demonstrated decreased calcification rates and defects
in coccolith morphology in G.huxleyi cells exposed to
elevated CO,. Further studies identified strain-spe-
cific sensitivity to ocean acidification and determined
the potential for adaptive evolution in G.huxleyi cul-
tures maintained at elevated CO, for hundreds of gen-
erations (Langer et al., 2009; Lohbeck et al., 2013).
Gephyrocapsa huxleyi is primarily sensitive to low sea-
water pH (rather than elevated CO,; Bach et al., 2011),
which is due to the requirement for unusual mecha-
nisms for pH homeostasis (voltage-gated H* channels)
in the calcification process (Taylor et al., 2011). Despite
the importance of G.huxleyi as a model organism for
calcification, relatively few specific gene products have
been directly linked to the calcification process, and
fewer still have been functionally characterized. Partial
purification of coccolith-associated polysaccharides
from G.huxleyi have enabled the identification of a
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novel low-complexity protein in these extracts (GPA),
although its role in the calcification process remains
unknown (Corstjens et al., 1998). A recent proteomic
analysis of purified coccoliths revealed a sub-set of
68 coccolith-associated proteins that represent excel-
lent candidates for further study into the calcification
process (Skeffington et al., 2023). The voltage-gated
H* channel is perhaps the only specific gene product
where a functional role in coccolith formation has been
directly shown (Kottmeier et al., 2022).

Like all coccolithophores, G. huxleyi displays a
haplo-diplontic life cycle (Frada et al., 2018). The dip-
loid phase of G.huxleyi is non-motile and produces
the characteristic heterococcoliths, while the haploid
phase is motile and non-calcified. The two life cycle
phases therefore provide an excellent model system
in which to compare the molecular mechanisms and
physiologies associated with these characteristics
(Rokitta et al., 2011; von Dassow et al., 2009). There
are several reports of life-cycle transitions in culture,
primarily the appearance of motile haploid cells in
cultures of diploid cells (Houdan et al., 2005), but the
ability to reproducibly trigger these transitions on de-
mand has remained elusive. Our inability to complete
the life cycle of G.huxleyi in the laboratory remains a
major obstacle to its development as a model organ-
ism, as it prevents the development of classical genetic
approaches, such as mapping and complementation
of mutants, which are available in other algal models,
such as Ectocarpus and Chlamydomonas (Cock, 2023;
Salome & Merchant, 2019).

Gephyrocapsa huxleyi has proven to be an import-
ant model system for understanding the biotic interac-
tions of phytoplankton. Viral particles had previously
been observed in many phytoplankton cells, but G. hux-
leyi represented the first system in which the infection
cycle could be induced in culture and studied exten-
sively (Bratbak et al., 1996). The coccolithoviruses are
giant double-stranded DNA viruses belonging to the
Phycodnoviridae. They exhibit a classic lytic infection
cycle and contribute to the termination of large G. hux-
leyi blooms in nature (Wilson et al., 2002). Sequencing
of the EhV86 viral genome revealed a remarkable
number of genes (472), including an entire pathway for
sphingolipid biosynthesis (Monier et al., 2009; Wilson
et al., 2005), which was subsequently demonstrated to
play a direct signaling role in the viral infection cycle
(Vardi et al., 2009). Gephyrocapsa huxleyi has also
proven to be useful in the study of wider microbial in-
teractions. These studies are beginning to reveal the
complexity of algal-bacterial interactions, such as
the “Jekyll and Hyde” relationship between the a-pro-
teobacterium Phaeobacter inhibens and G. huxleyi in
which the bacteria initially promote the growth of the
algae but ultimately kill them through the release of
toxins as cell densities increase (Segev et al., 2016;
Seyedsayamdost et al., 2011).

An important characteristic of the G. huxleyi metab-
olism is its ability to accumulate large amounts of the
osmolyte dimethylsulphonioproprionate (DMSP), which
is a precursor of the climate active gas, dimethyl sul-
fide (DMS; Steinke et al., 1998). The substantial DMSP
lyase activity exhibited by some G. huxleyi isolates has
enabled the use of protein purification techniques to
resolve this activity. This approach led to the identifi-
cation of Almal, a novel DMSP lyase belonging to the
aspartate racemase superfamily that is widespread
among eukaryote phytoplankton and distinct from all
known bacterial DMSP lyases (Alcolombri et al., 2015;
Johnston et al., 2016). Another area of the G.huxleyi
metabolism that has attracted much research attention
is the production of lipids, including the production of
omega-3 polyunsaturated fatty acids that are import-
ant for human health (Sayanova et al., 2011) and neu-
tral long chain lipids such as the C,,_,4 alkenones that
have been utilized as a climate proxy by paleobiologists
(Sawada & Shiraiwa, 2004).

RESOURCES FOR
G.HUXLEYI RESEARCHERS

One of the primary resources for G.huxleyi research
is a large collection of environmental isolates that are
held in algal culture collections across the world. These
strains have been isolated from multiple locations and
exhibit significant differences in physiology and coc-
colith morphology. Strains that have been used exten-
sively for laboratory experiments include CCMP1516
(used for genome sequencing), RCC1216/1217 (a hap-
loid/diploid pair for comparisons of life-cycle phases),
and CCMP373/374 (which show contrasting pheno-
types for DMSP lyase activity and susceptibility to viral
infection; Alcolombri et al., 2015 Bidle et al., 2007; Read
et al., 2013; von Dassow et al., 2009). This phenotypic
variability represents an important tool for G. huxleyi re-
search, although accurate recording of strain ancestry
and standardization of strain choice remain important
considerations for the future development of G. huxleyi
as a model organism.

The mitochondrial and chloroplast genomes of
G. huxleyi were sequenced in 2004 and 2005, respec-
tively (Sanchez Puerta et al., 2004, 2005), followed
by a full nuclear genome assembly in 2013 (Read
et al., 2013). The initial genome assembly of the dip-
loid CCMP1516 strain (Emihu1) revealed a 142 Mb hap-
loid genome that was GC-rich (65%) and dominated
by highly repetitive regions (>64%). One notable fea-
ture of the G.huxleyi genome is the presence of many
non-canonical intron splice junctions (GC-AG rather
than GT-AG), which can interfere with de novo predic-
tion of open reading frames. A refined transcriptome
assembly, guided by a dataset of manually curated
genes, led to a significantly improved transcript catalog
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Characteristics of model species for coccolithophore research.

TABLE 1

Environmental
distribution

Reports of genetic
transformation®?

Transcriptome
available®

Annotated
genome®

Degree of Calcification mutants Calcification in
identified®®

Robust growth

in culture

haploid phase®

No

calcification

Species

Cosmopolitan

Yes

Yes

Yes
No

++ Yes

o+

Gephyrocapsa huxleyi

Coastal

Yes
No

Yes

No

Yes
No

+++

Chrysotila carterae

Ocean

No Yes

Yes

+++

Coccolithus braarudii

Ocean

No Yes No

+++ No Yes

++

Calcidiscus leptoporus

Note: ®Paasche (1998); ®Marsh and Dickinson (1997); °Frada et al. (2018); 9Read et al. (2013); ®Faktorova et al. (2020); fCai et al. (2021); °Endo et al. (2016). Shaded squares represent advantageous traits for model

coccolithophore species.

(Feldmesser et al., 2014). This revealed that the vast
majority of splice sites in G.huxleyi are non-canonical
(GC-AT; 65%), contrasting with only 20% of non-ca-
nonical splice sites in the initial gene catalog. More
recently, sequencing and assembly of the nuclear ge-
nome of G.huxleyi strain AWI1516 (derived from strain
CCMP1516) using PacBio sequencing technology
has resulted in a greatly improved genome assembly
(Emihu2) with a haploid genome size of 98 Mb on 165
scaffolds (Skeffington et al., 2023). Forty percent of the
predicted proteins in Emihu2 do not have hits to the
Emihu1 proteome, which may be due to greater inclu-
sion of proteins with a low complexity or biased amino
acid composition than are typical for many biominer-
alization-associated proteins (Skeffington et al., 2023).

Gephyrocapsa huxleyi strains show a large variabil-
ity in gene content (Read et al., 2013). This genomic
diversity may be driven in part by the loss of genes
associated with the haploid life cycle phase in many
environmental G.huxleyi isolates (Bendif et al., 2023;
von Dassow et al., 2015). Recent construction of phy-
logenies using genome-wide single-nucleotide poly-
morphisms have revealed three distinct clades within
the G.huxleyi supercomplex that likely represent dis-
tinct species (Bendif et al., 2023). The phylogenies of
nuclear, chloroplast, and mitochondrial genes exhibit
significant incongruence, pointing to a convoluted in-
heritance of organellar genomes during introgressive
hybridization between these diverging lineages (Bendif
et al., 2015; Kao et al., 2022).

The availability of the G.huxleyi genome has facili-
tated the application of a range of omic technologies.
Transcriptomic studies include examination of the cel-
lular responses to nitrogen starvation and identification
of calcification-related mechanisms through the ma-
nipulation of seawater calcium concentrations (Nam
et al., 2020; Rokitta et al., 2014). An exciting develop-
ment is the application of single-cell RNA-seq, which
was used to profile transcriptomes from individual
G. huxleyi cells throughout the viral infection cycle (Ku
et al., 2020). Proteomic approaches have been used
extensively in G.huxleyi to examine, for example, the
cellular responses to warming (Dedman et al., 2023)
and to identify processes that are affected by nutrient
limitation (McKew et al., 2015; Shire & Kustka, 2022).
Metabolomic studies have revealed the importance of
mannitol as a carbon storage compound in G. huxleyi
(Obata et al., 2013) and identified important metabolic
differences between life-cycle stages during nutrient
starvation (Wordenweber et al., 2018).

TOOLS FOR
GENETIC MANIPULATION

One of the key obstacles to the future development
of G.huxleyi as a model organism has been the
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development of a robust system for genetic modifica-
tion to enable the characterization of individual mo-
lecular mechanisms through protein localization and
genome editing. Gephyrocapsa huxleyi does not grow
well on solid media, which severely hampers the se-
lection and isolation of individual transformed lines.
Skeffington et al. (2020) demonstrated that a starch
embedding method could be used to grow G.huxleyi
on solid media, enabling the selection of individual
colonies from a mixed population of cells. Recent re-
ports of successful transformation of G.huxleyi using
a promoter from the fucoxanthin chlorophyll-binding
protein to drive the expression of a serine palmitoyl-
transferase from the EhV virus are encouraging (Cai
et al., 2021). Successful transformation of other coc-
colithophores (Chrysotila carterae) and members of
the Isochrysidales (Tisochrysis lutea) has also been re-
ported (Endo et al., 2018, 2016). However, these remain
isolated reports, and it remains to be seen whether
these protocols can be readily transferred to other labo-
ratories to support the research activities of the wider
community. Community-wide approaches are needed
to support the development of tools and techniques to
aid genetic manipulation.

FUTURE PERSPECTIVES

Ease of laboratory culture combined with high ecologi-
cal relevance have made G. huxleyi the most important
model for many aspects of coccolithophore biology.
Recent developments such as a better understand-
ing of the mechanisms causing phenotypic diversity
between strains and an improved genome assembly
allowing refined gene model predictions represent im-
portant steps forward. However, the development of ro-
bust and efficient protocols for genetic transformation
and the ability to complete the life cycle in the labora-
tory remain important priorities for the future develop-
ment of G. huxleyi as a model organism.

Certain characteristics, particularly its small cell
size, means that G. huxleyi is not an appropriate model
for some laboratory techniques (Table 1). Chrysotila
carterae remains an important model for calcification,
supported by the availability of non-calcifying mutants
(Marsh & Dickinson, 1997) and its much larger cell size,
which has enabled high-resolution examination of coc-
colith formation using cryoelectron tomography (Kadan
et al., 2021). Other important models for calcification in-
clude Coccolithus braarudii and Calcidiscus leptopo-
rus (Avrahami et al., 2022; Langer et al., 2021). These
large species exhibit less robust growth in laboratory
culture than either G. huxleyi or Chrysotila carterae but
calcify at a much greater rate and are amenable to cell
physiology approaches, such as the patch-clamp tech-
nique, which has revealed novel aspects of coccolitho-
phore membrane physiology (Taylor & Brownlee, 2003;

Taylor et al., 2011). Understanding the biology of heav-
ily calcified species is critical because although they
are less numerous than G.huxleyi, they contribute a
greater proportion of calcite export to the deep ocean
(Hernandez et al., 2020). Improving our understanding
of the wider physiological and ecological roles of calci-
fication remains an important challenge in coccolitho-
phore biology. Although it is likely that primary role of
coccoliths is to act as a protective barrier around the
cell (Monteiro et al., 2016), the significant morpholog-
ical diversity of coccoliths between species suggests
considerable diversification of their cellular roles.
Gephyrocapsa huxleyi remains the species of choice
for many applications, and it will certainly continue to
develop as the premier model for coccolithophore biol-
ogy, although the utility of other species, particularly in
the study of calcification, will likely support the develop-
ment of alternative model systems.
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